
Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Morphology parsing
Informatics 2A: Lecture 7

John Longley

School of Informatics
University of Edinburgh
jrl@inf.ed.ac.uk

4 October, 2011

1 / 16

jrl@inf.ed.ac.uk

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

1 Morphology parsing: the problem

2 Finite-state transducers

3 FSTs for morphology parsing and generation

(This lecture is taken directly from Jurafsky & Martin chapter 3.)

2 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Morphological parsing: the problem

In many languages, words can be made up of a main stem
(carrying the basic dictionary meaning) plus one or more affixes
carrying grammatical information. E.g. in English:

Surface form: cats walking smoothest
Lexical form: cat+N+PL walk+V+PresPart smooth+Adj+Sup

Morphological parsing is the problem of extracting the lexical form
from the surface form.

Should take account of:

Irregular forms (e.g. goose → geese)

Systematic rules (e.g. ‘e’ inserted before suffix ‘s’ after
s,x,z,ch,sh: fox → foxes, watch → watches)

3 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Why bother?

NLP tasks involving meaning extraction will often involve
morphology parsing.

But even a humble task like spell checking can benefit: e.g. is
‘walking’ a possible word form?

Why not just list all derived forms separately in our wordlist (e.g.
walk, walks, walked, walking)?

Might be OK for English, but not for a morphologically rich
language — e.g. in Turkish, can pile up to 10 suffixes on a
verb stem, leading to 40,000 possible forms for some verbs.

Even for English, morphological parsing makes adding new
words easier (e.g. ‘frape’).

Morphology parsing is just more interesting than brute listing!

4 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Parsing and generation

Parsing here means going from the surface to the lexical form.
E.g. foxes → fox +N +PL.

Generation is the opposite process: fox +N +PL → foxes. It’s
helpful to consider these two processes together.

Either way, it’s often useful to proceed via an intermediate form,
corresponding to an analysis in terms of morphemes (= minimal
meaningful units) before orthographic rules are applied.

Surface form: foxes
Intermediate form: fox ˆ s #
Lexical form: fox +N +PL

(̂ means morpheme boundary, # means word boundary.)

N.B. The translation between surface and intermediate form is
exactly the same if ‘foxes’ is a 3rd person singular verb!

5 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Finite-state transducers

We can consider ε-NFAs (over an alphabet Σ) in which transitions
may also (optionally) produce output symbols (over a possibly
different alphabet Π).

E.g. consider the following machine with input alphabet {a, b} and
output alphabet {0, 1}:

a:0 a:1

b: ε

b: ε

Such a thing is called a finite state transducer.
In effect, it specifies a (possibly multi-valued) translation from one
regular language to another.

6 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Clicker exercise

a:0 a:1

b: ε

b: ε

What output will this produce, given the input aabaaabbab?

1 001110

2 001111

3 0011101

4 More than one output is possible.

7 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Formal definition

Formally, a finite state transducer T with inputs from Σ and
outputs from Π consists of:

sets Q, S , F as in ordinary NFAs,

a transition relation ∆ ⊆ Q × (Σ∪{ε})× (Π∪{ε})× Q

From this, one can define a many-step transition relation
∆̂ ⊆ Q × Σ∗ × Π∗ × Q, where (q, x , y , q′) ∈ ∆̂ means “starting
from state q, the input string x can be translated into the output
string y , ending up in state q′.” (Details omitted.)

Note that a finite state transducer can be run in either direction!
From T as above, we can obtain another transducer T just by
swapping the roles of inputs and outputs.

8 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Stage 1: From lexical to intermediate form

Consider the problem of translating a lexical form like ‘fox+N+PL’
into a sequence of morphemes, taking account of irregular forms
like goose/geese.

We can do this with a transducer of the following schematic form:

+N: ε

+N: ε

+N: ε

regular noun
(copied to output)

(copied to output)

irregular noun

irregular noun
(replaced by plural)

+PL : ^s#

+SG : #

+SG : #

+PL : #

We treat each of +N, +SG, +PL as a single symbol. The
‘transition’ labelled +PL : ŝ# abbreviates three transitions:
+PL : ,̂ ε : s, ε : #. 9 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

The Stage 1 transducer fleshed out

The left hand part of the preceding diagram is an abbreviation for
something like this (only a small sample shown):

o:e

o:e

e

g o o s e

s

f

c
a

t

o x

Here, for simplicity, a single label u abbreviates u : u.

10 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Stage 2: From intermediate to surface form

To convert a sequence of morphemes to surface form, we apply a
number of orthographic rules such as the following.

Consonant doubling: Single consonants b,s,g,k,l,m,n,p,r,s,t,v
are doubled before suffix -ed or -ing. (beg → begged)

E-insertion: Insert e after s,z,x,ch,sh before a word-final
morpheme -s. (fox → foxes)

We shall consider a simplified form of E-insertion, ignoring ch,sh.

(Note that this rule is oblivious to whether -s is a plural noun suffix
or a 3rd person verb suffix.)

11 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

A transducer for E-insertion

^: ε
^: ε

^: ε#, ?

?

z,s,x

#,?

#,?

z,s,x s

z,x

:eε s0 1 4

5

2 3

#

Here ? may stand for any symbol except z,s,x,̂ ,#.
(With each input #, we should output e.g. a space character.)

At a morpheme boundary following z,s,x, we arrive in State 2.
If the ensuing input sequence is s#, our only option is to go via
states 3 and 4.

State 5 would allow e.g. ‘ex̂ servicê men#’ to be translated to
‘exservicemen’. Note that there’s no #-transition out of State 5.

12 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Putting it all together

FSTs can be cascaded: output from one can be input to another.

To go from lexical to surface form, use ‘Stage 1’ transducer
followed by a bunch of orthographic rule transducers like the above.

The results of this generation process are typically deterministic
(each lexical form gives a unique surface form), even though our
transducers make use of non-determinism along the way.

Running the same cascade backwards lets us do parsing (surface to
lexical form). Because of ambiguity, this process is frequently
non-deterministic: e.g. ‘foxes’ might be analysed as fox+N+PL or
fox+V+Pres+3SG.

Such ambiguities are not resolved by morphological parsing itself:
left to a later processing stage.

13 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Clicker exercise 2

^: ε
^: ε

^: ε#, ?

?

z,s,x

#,?

#,?

z,s,x s

z,x

:eε s0 1 4

5

2 3

#

Apply this backwards to translate from surface to int. form.

Starting from state 0, how many sequences of transitions are
compatible with the input string ‘asses’ ?

1 1
2 2
3 3
4 4
5 More than 4

14 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Solution

^: ε
^: ε

^: ε#, ?

?

z,s,x

#,?

#,?

z,s,x s

z,x

:eε s0 1 4

5

2 3

#

On the input string ‘asses’, 10 transition sequences are possible!

0
a→ 0

s→ 1
s→ 1

ε→ 2
e→ 3

s→ 4, output asŝ s

0
a→ 0

s→ 1
s→ 1

ε→ 2
e→ 0

s→ 1, output asŝ es

0
a→ 0

s→ 1
s→ 1

e→ 0
s→ 1, output asses

0
a→ 0

s→ 1
ε→ 2

s→ 5
ε→ 2

e→ 3
s→ 4, output aŝ ŝ s

0
a→ 0

s→ 1
ε→ 2

s→ 5
ε→ 2

e→ 0
s→ 1, output aŝ ŝ es

0
a→ 0

s→ 1
ε→ 2

s→ 5
e→ 0

s→ 1, output aŝ ses

Four of these can also be followed by 1
ε→ 2 (output)̂. 15 / 16

Morphology parsing: the problem
Finite-state transducers

FSTs for morphology parsing and generation

Reading

Relevant reading: Jurafsky and Martin chapter 3, sections 1–7.

Next time: What are the limits to the class of regular languages?
How can we prove that a certain language is not regular?

16 / 16

	Morphology parsing: the problem
	Finite-state transducers
	FSTs for morphology parsing and generation

