
Languages and Finite State Machines
Some formal definitions

DFA minimization

Finite State Machines (mostly revision)
Informatics 2A: Lecture 3

John Longley

School of Informatics
University of Edinburgh
jrl@inf.ed.ac.uk

23 September, 2011

1 / 22

jrl@inf.ed.ac.uk


Languages and Finite State Machines
Some formal definitions

DFA minimization

1 Languages and Finite State Machines
What is a ‘language’?
Regular languages and finite state machines: recap

2 Some formal definitions
Deterministic finite automata
Non-deterministic finite automata

3 DFA minimization
The problem
An algorithm for minimization

2 / 22



Languages and Finite State Machines
Some formal definitions

DFA minimization

What is a ‘language’?
Regular languages and finite state machines: recap

Languages and alphabets

Throughout this course, languages will consist of finite sequences
of symbols drawn from some given alphabet.
An alphabet Σ is simply some finite set of letters or symbols which
we treat as ‘primitive’. These might be . . .

English letters: Σ = {a, b, . . . , z}
Decimal digits: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
ASCII characters: Σ = {0, 1, . . . , a, b, . . . , ?, !, . . .}
Programming language ‘tokens’: Σ = {if, while, x,==, . . .}
Words in (some fragment of) a natural language.

‘Primitive’ actions performable by a machine or system, e.g.
Σ = {insert50p, pressButton1, . . .}

In toy examples, we’ll use simple alphabets like {0, 1} or {a, b, c}.
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What is a ‘language’?

A language over an alphabet Σ will consist of finite sequences
(strings) of elements of Σ. E.g. the following are strings over the
alphabet Σ = {a, b, c}:

a b ab cab bacca cccccccc

There’s also the empty string , which we usually write as ε.

A language over Σ is simply a (finite or infinite) set of strings over
Σ. A string s is legal in the language L if and only if s ∈ L.

We write Σ∗ for the set of all possible strings over Σ. So a
language L is simply a subset of Σ∗. (L ⊆ Σ∗)

(N.B. This is just a technical definition — any real language is
obviously much more than this!)
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Ways to define a language

There are many ways in which we might formally define a
language:

Direct mathematical definition, e.g.

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

Regular expressions (see Lecture 5).

Formal grammars (see Lecture 9 onwards).

Specify some machine for testing whether a string is legal or
not.

The more complex the language, the more complex the machine
might need to be. As we shall see, each level in the Chomsky
hierarchy is correlated with a certain class of machines.
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Finite state machines

0

1 1

0

even odd

This is an example of a finite state machine over Σ = {0, 1}.
At any moment, the machine is in one of 2 states. For any state,
and any symbol in Σ, there’s just one ‘new state’ we can jump to.

The state marked with the in-arrow is picked out as the starting
state. So any string in Σ∗ gives rise to a sequence of states.

Certain states (with double circles) may be designated as
accepting. We call a string ‘legal’ if it takes us from the start state
to some accepting state. In this way, the machine defines a
language L ⊆ Σ∗.
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Finite state machines: Clicker question(?)

0

1 1

0

even odd

For the finite state machine shown here, which of the following
strings is not legal (i.e. not accepted)?

1 ε

2 101

3 1010

4 11
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Deterministic finite automata (DFAs)

Formally, a DFA with alphabet Σ consists of:

A finite set Q of states,

A transition function δ : Q × Σ → Q,

A designated starting state s ∈ Q,

A set F ⊆ Q of accepting states.

Example:

Q = {even, odd}

δ :

0 1

even odd even
odd even odd

s = even

F = {even}
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The language associated with a DFA

Suppose M = (Q, δ, s,F ) is a DFA with alphabet Σ.
We can define a many-step transition function δ̂ : Q × Σ∗ → Q by

δ̂(q, ε) = q

δ̂(q, xu) = δ(δ̂(q, x), u)

for q ∈ Q, x ∈ Σ∗, u ∈ Σ.

Example: δ̂(odd, 101) = even.

This enables us to define the language accepted by M:

L(M) = {x ∈ Σ∗ | δ̂(s, x) ∈ F}

We call a language L ⊆ Σ∗ regular if L = L(M) for some DFA M.
Regular languages will occupy us for the next five lectures.
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Example

Let M be the DFA shown earlier:

0

1 1

0

even odd

Then L(M) can be described directly as follows:

L(M) = {x ∈ Σ∗ | x contains an even number of 0’s}
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More examples

Which of these three languages do you think are regular?

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

If they are, can you design a DFA that shows this?
If not, can you see why not? (We’ll revisit this in Lecture 8.)

Aside: DFAs are dead easy to implement and efficient to run. (We
don’t need much more than a two-dimensional array for the
transition function δ.) So it’s worth knowing when some task can
be performed by a DFA.

11 / 22



Languages and Finite State Machines
Some formal definitions

DFA minimization

Deterministic finite automata
Non-deterministic finite automata

Variation on a theme: Non-deterministic finite automata

In an NFA, for any current state and any symbol, there may be
zero, one or many new states we can jump to.

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

Here there are two transitions for ‘1’ from q0, and none from q5.

NFAs are useful because . . .

We often wish to ignore certain details of a system, and model
just the range of possible behaviours.

Some languages can be specified much more concisely by
NFAs than by DFAs.

Certain useful facts about regular languages are most
conveniently proved using NFAs (see next lecture).
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The language accepted by an NFA

The language associated with an NFA is defined to consist of all
strings that might be accepted by it (i.e. are accepted under some
possible execution run).

Example:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

The associated language is

{x ∈ Σ∗ | the fifth symbol from the end of x is 1}

To ponder: Could you design a DFA for the same language?
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Formal definition of NFAs

Formally, an NFA N with alphabet Σ consists of:

A set Q of states,

A transition relation ∆ ⊆ Q × Σ× Q,

A set S ⊆ Q of possible starting states.

A set F ⊆ Q of accepting states.

(Note: any DFA is an NFA!)

From this, we can define a many-step transition relation
∆̂ ⊆ Q × Σ∗ × Q:

(q, ε, q′) ∈ ∆̂ iff q′ = q

(q, xu, q′) ∈ ∆̂ iff ∃q′′. (q, x , q′′) ∈ ∆̂ & (q′′, u, q′) ∈ ∆

The language accepted by the NFA is then

L(N) = {x ∈ Σ∗ | ∃s, q. s ∈ S & (s, x , q) ∈ ∆̂ & q ∈ F}
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The Minimization Problem

Think about DFAs again. Many different DFAs can give rise to the
same language, e.g.:

0

1 1

0

even odd

0

0

00

11

1 1

0,1

q2

q1 q4

q3

q0

This raises the question: Is there a ‘best’ or ‘smallest’ choice of
DFA for a given regular language?
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DFA minimization

Suppose M = (Q, δ, s,F ) is the following DFA:

0

0

00

11

1 1

0,1

q2

q1 q4

q3

q0

Informally, we can perform the following steps to ‘reduce’ M:

Throw away unreachable states (in this case, q4).
Squish together equivalent states, i.e. states q, q′ such that

∀x ∈ Σ∗. δ̂(q, x) ∈ F ⇔ δ̂(q′, x)

In this case, q0 and q2 are equivalent, as are q1 and q3.

Let’s write Min(M) for the resulting reduced DFA. In this case,
Min(M) is essentially the two-state machine on the previous slide.
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Properties of minimization

The minimization operation on DFAs has the following pleasing
properties:

L(Min(M)) = L(M).

Min(M) ∼= Min(M ′) if and only if L(M) = L(M ′).

(Consequence.) Min(Min(M)) ∼= Min(M).

Min(M) is the smallest DFA (in terms of number of states)
with the same language as M.

Here ‘∼=’ means the two DFAs are isomorphic: that is, the same
apart from a possible renaming of states.

So up to isomorphism, minimization gives a ‘best’, or standard,
choice of a DFA for a given regular language.

For a formal treatment of minimization, see Kozen chapters 13–16.
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Minimization in practice

Let’s look again at our definition of equivalence of states:

q ≈ q′ iff ∀x ∈ Σ∗. δ̂(q, x) ∈ F ⇔ δ̂(q′, x)

This is fine as an abstract mathematical definition of equivalence,
but it doesn’t seem to give us a way to compute which states are
equivalent: we’d have to ‘check’ infinitely many strings x ∈ Σ∗.

Fortunately, there’s an actual algorithm for DFA minimization that
works in reasonable time.

This is useful in practice: we can specify our DFA in the most
convenient way without worrying about its size, then minimize to a
more ‘compact’ DFA to be implemented e.g. in hardware.
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An algorithm for minimization

First eliminate any unreachable states (easy).

Then create a table of all possible pairs of states (p, q), initially
unmarked. (E.g. a two-dimensional array of booleans, initially set
to false.) We mark pairs (p, q) as and when we discover that p and
q cannot be equivalent.

1 Start by marking all pairs (p, q) where p ∈ F and q 6∈ F , or
vice versa.

2 Look for unmarked pairs (p, q) such that for some u ∈ Σ, the
pair (δ(p, u), δ(q, u)) is marked. Then mark (p, q).

3 Repeat step 2 until no such unmarked pairs remain.

If (p, q) is still unmarked, can collapse p, q to a single state.
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Clicker question

Apply minimization to the following DFA over {a, b}.

q1

q3q2

q0

a

b

ab
b

b

a

a

How many states does the minimized DFA have? 1, 2, 3 or 4?
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Solution

The minimized DFA has just 2 states! q0, q1 and q2 can all be
identified, but clearly q3 must be kept distinct from these.

q3q012 b
ba

a

Notice that the corresponding language consists of all strings
ending with b.
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Reading

Relevant reading:

DFAs and regular languages: Kozen chapter 3;
J & M section 2.2.

NFAs: parts of Kozen chapters 5 and 6;
J & M section 2.2.4–2.2.5.

Minimization: Kozen chapters 13–16.

Next time: Are NFAs really ‘more powerful’ than DFAs? (See rest
of Kozen chapters 5 and 6.)

22 / 22


	Languages and Finite State Machines
	What is a `language'?
	Regular languages and finite state machines: recap

	Some formal definitions
	Deterministic finite automata
	Non-deterministic finite automata

	DFA minimization
	The problem
	An algorithm for minimization


