
Probabilistic Finite-State Machines—Part I
Enrique Vidal, Member, IEEE Computer Society, Franck Thollard, Colin de la Higuera,

Francisco Casacuberta, Member, IEEE Computer Society, and Rafael C. Carrasco

Abstract—Probabilistic finite-state machines are used today in a variety of areas in pattern recognition, or in fields to which pattern

recognition is linked: computational linguistics, machine learning, time series analysis, circuit testing, computational biology, speech

recognition, and machine translation are some of them. In Part I of this paper, we survey these generative objects and study their

definitions and properties. In Part II, we will study the relation of probabilistic finite-state automata with other well-known devices that

generate strings as hidden Markov models and n-grams and provide theorems, algorithms, and properties that represent a current

state of the art of these objects.

Index Terms—Automata, classes defined by grammars or automata, machine learning, language acquisition, language models,

language parsing and understanding, machine translation, speech recognition and synthesis, structural pattern recognition, syntactic

pattern recognition.

�

1 INTRODUCTION

PROBABILISTIC finite-state machines such as probabilistic
finite-state automata (PFA) [1], hidden Markov models

(HMMs) [2], [3], stochastic regular grammars [4], Markov
chains [5], n-grams [3], [6], probabilistic suffix trees [7],
deterministic stochastic or probabilistic automata (DPFA) [4],
weighted automata [8] are some names of syntactic objects
which during the past years have attempted to model and
generate distributions over sets of possible infinite cardinality
of strings, sequences, words, phrases but also terms and trees.

Their successes in a wide amount of fields ranging from
computational linguistics [8] to pattern recognition [9], [10],
[11], [12], and including language modeling in speech
recognition [2], [3], [13], bioinformatics [14], [15], [16], [17],
music modeling [18], machine translation [8], [19], [20], [21],
[22], [23], [24], [25], [26], circuit testing [27], or time series
analysis [28] make these objects very valuable indeed. But,
as more and more researchers have entered this field,
definitions and notations have varied and not enough
energy has been spent to reach a common language. For the
outsider, the choice of the best fitting syntactic object to
describe the sort of distribution she/he is working on will
seldom depend on anything else than the usual knowledge
in the subfield or on her/his own background.

There has been a number of survey papers dedicated to
one or another of these models during the past 30 years [8],
[29], [30], [31], [32], [33], but it is not always obvious through
reading these papers how the models interrelate and where

the difficulties lie. These difficulties have been theoretically
analyzed in the computational learning theory literature [34],
[35], [36], [37], [38]; alas, these results, highly technical, seem
not to have reached the adequate communities. A possible
exception is the very recent paper by Dupont et al. [39].

Furthermore, more and more folk theorems appear:
HMMs might be equivalent to PFA, parsing a string in the
nondeterministic case by taking the best derivation (instead
of summing up over the possible derivations) could be a
good approximation; determinism might not (as in common
language theory) modify the expressive power of PFA.
Some of these results are true, others are not. And even in
the case of the true “folk theorems,” most researchers
would not know why they hold.

The complexity of the objects themselves and, moreover,
of the underlying theories (for instance, probabilities, matrix
calculus, rational power series), makes many of the usual
results depend on some exterior theory: For example,
consider the question (studied in Section 4.3) of knowing if
the mean of two regular deterministic distributions is also
regular deterministic. If this was so, we could merge
distributions using DPFA. But, this is false and a proof can
be given using results on rational series. We argue that such a
proof (albeit simpler than the one we propose) offers little
insight for people working in the field. Knowing how to
construct the counterexample is of much more use: It helps,
for instance, to build hard cases that can be used for other
problems or to identify a subclass of distributions where the
counterexample will not hold.

The above example gives the spirit in which the paper is
written. It aims to provide an up-to-date theory of PFA, but
also a survey of where the objects themselves give the
answers to the questions that naturally arise.

Another preliminary question is that of justifying our
interest in PFA to describe distributions rather than some
other devices, among which the most popular may be the
HMMs. Our choice of centering the survey on PFA instead
of HMMs is because of at least three reasons:

. formal language theory appears to be today a wide-
spread background knowledge to researchers and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005 1013

. E. Vidal and F. Casacuberta are with the Departamento de Sistemas
Informáticos y Computación and Instituto Tecnológico de Informática,
Universidad Politécnica de Valencia, Camino de Vera s/n, E-46071
Valencia, Spain. E-mail: {evidal, fcn}@iti.upv.es.

. F. Thollard and C. de la Higuera are with EURISE—Faculté des Sciences
et Techniques, FR-42023 Saint-Etienne Cedex 2, France.
E-mail: {Franck.Thollard, Colin.Delahiguera}@univ-st-etienne.fr.

. R.C. Carrasco is with the Departamento de Lenguajes y Sistemas
Informáticos, Universidad de Alicante, E-03071 Alicante, Spain.
E-mail: carrasco@dlsi.ua.es.

Manuscript received 12 Jan. 2004; revised 3 Aug. 2004; accepted 20 Sept.
2004; published online 12 May 2005.
Recommended for acceptance by M. Basu.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.organdreference IEEECSLogNumberTPAMISI-0031-0104.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

engineers in computer science. Adding probabilities
to well-known objects, as automata permits us to build
on our intuitions and experiences. On the other hand,
HMMs are directly issued from probability theory.
This parentage also affects the way the theory is
constructed. PFA are built to deal with the problem of
probabilizing a structured space by adding probabil-
ities to structure, whereas HMMs might rather be
considered as devices that structure probabilistic
spaces by adding structure to probabilities. Neither
choice is fundamentally better, but if concerned with a
task where one wishes to use probabilistic devices in
order to grasp the structure of the data, the first one
seems more appropriate.

. As we will prove in the second part of our paper [40],
PFA can represent the same distributions as those
modeled by the HMMs defined in that section.
Furthermore, they can do so in at most as much space,
and the common algorithms are at least as simple.

. A third point is that as PFA are finite-state automata
with weights that verify some constraints, then if the
underlying automaton is deterministic, we have a
deterministic probabilistic finite-state automaton
(DPFA). In formal language theory, there is a key
difference between deterministic and nondeterminis-
tic finite-state machines which extends to the prob-
abilistic case: DPFA are very much favored because
parsing with them is simpler and also because they
admit a minimal object which, in turn, makes the
equivalence problem tractable. A probabilistic deter-
ministic machine also exists, which we will study with
special attention. Even if these machines are not as
powerful as their nondeterministic counterpart, they
play an important role in a number of applications.

Our first objective will be to establish correct definitions for
the different sorts of probabilistic automata; this will be done
in Section 2. The probabilistic automata we consider in this
paper are generative processes. It should be noted that in the
line of [41] probabilistic acceptors have also been studied.

A simple problem as that of parsing can be upsetting:
We provide in Section 3 all required equations and
algorithms dealing with parsing. The goal of the section is
to study the relationship between the PFA and the strings
they generate [42], [43].

Section 4 is devoted to study the intrinsic properties of
PFA. Minimality issues are discussed in Section 4.1. In
Section 4.2, we will prove that there are distributions that
cannot be represented by DPFA, whereas they can by PFA.

Topology over regular distributions will be thoroughly
studied in Section 5. On the one hand, entropy-based
measures such as the Kullback-Leibler divergence or the
perplexity can arguably measure the quality of a model. On
the other hand, alternative mathematical distances [16], [17],
[44] can be used. Some of them can effectively be computed
over the representants of the distributions, at least when these
are deterministic.

Part II [40] of the paper will be devoted to the
comparison with other types of models, learning issues,
and the presentation of some of the extensions of the
probabilistic automata.

In order to make the manuscript more readable, the
proofs of the propositions and theorems are left to the
corresponding appendixes.

As all surveys, this one is incomplete. In our case, the
completeness is particularly difficult to achieve due to the
enormous and increasing amount of very different fields
where these objects have been used. In advance, we would
like to apologize to all whose work on the subject we have not
recalled.

2 DEFINITIONS

Probabilistic finite-state automata are chosen as key syntac-
tic representations of the distributions for a certain amount
of reasons:

. Formal language theory appears to be today one of
the most widespread background knowledges to
researchers and engineers in computer science.

. PFA can represent the same distributions as those
modeled by some MM.

. PFA admit a deterministic version for which most
natural problems become tractable. Even though
nondeterministic PFA are not equivalent to their
deterministic counterparts, these (DPFA) have been
studied by a number of authors because of their
particular properties.

. In practice, PFA can be used to implement other
finite-state models.

There is a variety of definitions regarding PFA in the
literature. The ones we choose to give here are sufficiently
general to cover most cases where the intended distribution is
over the set of all strings (and not just the set of strings of some
special length). The cases that do not fit in this definition will
be analyzed in the second part of our paper [40].

In the general definition of such automata, the probabilities
are real numbers but as they are intended for practical use, the
probabilitiesareratherrepresentedas rationalnumbers. Also,
rational probabilities are needed for discussing computa-
tional properties involving the concept of size of an auto-
maton.Adifferent linewas successfully followed in [8],where
the probabilities are just a special case of abstract weights: The
algebra over which the weights are computed then allows us
to deal with all cases, whether computable or not.

We now give the formal definitions of probabilistic
automata we are going to use in the rest of the paper.

2.1 Stochastic Languages

Let � be a finite alphabet and �? the set of all strings that can
be built from �, including the empty string denoted by �.

A language is a subset of �?. By convention, symbols in �
will be denoted by letters from the beginning of the
alphabet (a; b; c; . . .) and strings in �? will be denoted by
end of the alphabet letters (. . . ; x; y; z). The length of a string
x 2 �? is written jxj. The set of all strings of length n
(respectively, less than, at most n) will be denoted by �n

(respectively, �<n, ��n). A substring of x from position i to
position j will be denoted as xi . . .xj. A substring xi . . .xj

with j < i is the empty string �.
A stochastic language D is a probability distribution over

�?. We denote by PrDðxÞ the probability1 of a string x 2
�? under the distribution D. The distribution must verifyP

x2�? PrDðxÞ ¼ 1. If the distribution is modeled by some

1014 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

1. As usual, we will use the notation of PrðxÞ as PrðX ¼ xÞ and Prðx j yÞ
as PrðX ¼ x j Y ¼ yÞ for any random variables X and Y .

syntactic machine A, the probability of x according to the
probability distribution defined by A is denoted PrAðxÞ.
The distribution modeled by a machine A will be denoted
DA and simplified to D in a nonambiguous context.

If L is a language over �, and D a distribution over �?,
PrDðLÞ ¼

P
x2L PrDðxÞ.

A sample S is a multiset of strings: As they are usually
built through sampling, one string may appear more than
once. We will write x 2 S to indicate that (several instances
of the) string x is (are) represented in the sample. The size
jSj of sample S, is the total number of strings in the sample
and kSk is the total sum of lengths of all the strings in S. It
should be noted that neither of these measures of sizes
corresponds to the actual number of bits needed to encode a
sample. The empirical finite-support distribution associated
with S will be denoted as DS , i.e., PrDS

ðxÞ ¼ fðxÞ=jSj, where
fðxÞ is the frequency (number of repetitions) of x in S and
PrDS

ðxÞ ¼ 0 if x =2S.

2.2 Probabilistic Automata

We present, in this section, formal definitions about
probabilistic automata. These are directly inspired by a
number of works in machine learning and pattern recogni-
tion, including [1], [4], [13], [45], [46], [47].

Definition 1. A PFA is a tuple A ¼ hQA;�; �A; IA; FA; PAi,
where:

. QA is a finite set of states;

. � is the alphabet;

. �A � QA � ��QA is a set of transitions;

. IA : QA ! IRþ (initial-state probabilities);

. PA : �A ! IRþ (transition probabilities);

. FA : QA ! IRþ (final-state probabilities).

IA, PA, and FA are functions such that:X
q2QA

IAðqÞ ¼ 1;

and

8q 2 QA; FAðqÞ þ
X

a2�;q02QA

PAðq; a; q0Þ ¼ 1:

It should be noted that probabilities may be null (0 2 IRþ)
and, therefore, functions IA, FA, and PA can be considered as
total. Similarly, for the sake of notation simplification, PA is
assumed to be extended with PAðq; a; q0Þ ¼ 0 for all
ðq; a; q0Þ 62 �A.

In what follows, the subscript A will be dropped when
there is no ambiguity. A generic state of Q will be denoted by
q without subindex, the specific states in Q will be denoted
as q0; q1 . . . ; qjQj�1, and a sequence of states of length j will be
denoted by ðs1; s2; . . . ; sjÞ, where si 2 Q for 1 � i � j.

As will be seen in the next section, the above automata
definition corresponds to models which are generative in
nature. This is in contrast with the standard definition of
automata in the conventional (nonprobabilistic) formal
language theory, where strings are generated by grammars
while the automata are the accepting devices. It is not difficult
to prove that the definition adopted in this paper is equivalent
to the definition of stochastic regular grammar [9], [32]. From a
probabilistic point of view, the process of (randomly)
accepting a given string is essentially different from the
process of generating a (random) string. Probabilistic

acceptors are defined in [9], [41], but they have only seldom
been considered in syntactic pattern recognition or in
(probabilistic) formal language theory.

Typically, PFAs are represented as directed labeled
graphs. Fig. 1 shows a graph representation, an example of a
PFA with four states, Q ¼ fq0; q1; q2; q3g, only one initial state
(i.e., a state q with IðqÞ > 0), q0, and a four-symbol alphabet,
� ¼ fa; b; c; dg. The real numbers in the states and in the
arrows are the final-state and the transition probabilities,
respectively.

A particular case of PFA arises when the underlying
graph is acyclic. These types of models are known as acyclic
probabilistic finite-state automata (APFA) [48]. On the other
hand, a more general model is defined in the next section.

2.3 �-Probabilistic Finite-State Automata (�-PFA)

Definition 2. A �-PFA A is a tuple hQ;�; �; I; F ; P i, where Q,

�, I, and F are defined as for PFA, but � is extended to

� � Q� ð� [f�gÞ �Q.
P and F verify a similar normalization as for PFA with

the sum for all a 2 � extended to include �:

8q 2 Q;F ðqÞ þ
X

a2�[f�g;q02Q
P ðq; a; q0Þ ¼ 1:

�-PFA appear as natural objects when combining distribu-
tions. They are nevertheless not more powerful than PFA in
the sense that they generate the same distributions (see
Section3.3).�-PFA introduces specific problems, in particular,
when sequences of transitions labeled with � are considered.
In Section 3.3, some of these problems are analyzed. When
considering �-PFA a few concepts will be needed:

Definition 3. For any �-PFA A ¼ hQ;�; �; I; F ; P i

. A �-transition is any transition labeled by �;

. A �-loop is a transition of the form ðq; �; qÞ;

. A �-cycle is a sequence of �-transitions from �:
ðsi1 ; �; si2Þ; ðsi2 ; �; si3Þ; . . . ; ðsik ; �; si1Þ, where 8j : 0 <
j < k ðsij , �; sijþ1

Þ 2 �.

2.4 Deterministic Probabilistic Finite-State
Automata (DPFA)

Even though determinism (as we shall show later) restricts

the class of distributions that can be generated, we
introduce deterministic probabilistic finite-state automata

because of the following reasons:

. Parsing is easier as only one path has to be followed.

. Some intractable problems (finding the most prob-
able string, comparing two distributions) become
tractable.

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I 1015

Fig. 1. Graphical representation of a PFA.

. There are a number of positive learning results for
DPFA that do not hold for PFA.

Definition 4. A PFA A ¼ hQ;�; �; I; F ; P i is a DPFA, if:

. 9q0 2 Q (initial state), such that Iðq0Þ ¼ 1;

. 8q 2 Q;8a 2 �; jfq0 : ðq; a; q0Þ 2 �gj � 1.

In a DPFA, a transition ðq; a; q0Þ is completely defined by q
and a and a DPFA can be more simply denoted by
hQ;�; �; q0; F ; P i.

A particular case of DPFA is the probabilistic prefix tree
automaton (PPTA) where the underlying graph is a tree rooted
at the initial state q0.

2.5 Size of a PFA

If PFA are to be implemented, then we are concerned with two
issues. On the one hand, all probabilities have to be encoded
and, thus, the range of functions I, F , and P should be QQþ

instead of IRþ. A second point is that in order to compute the
complexity of an algorithm, we must be able to give the size of
a PFA (or DPFA, �-PFA). The complexity should be poly-
nomially linked with the number of bits needed to encode the
PFA in a reasonable way. It follows that, in the case of DPFA a
correct measure of the size is the sum of the number n of
states, the size j�j of the alphabet, and the number of bits
needed to encode all the nonnull probabilities in the
automaton. In the case of PFA or �-PFA, because of
nondeterminism, the number of transitions in the automaton
should also appear.

2.6 Distributions Modeled by PFA

PFA are stochastic machines that may not generate a
probability space but a subprobability space over the set
of finite-strings �?. Given a PFA (or �-PFA) A, the process of
generating a string proceeds as follows:

. Initialization: Choose (with respect to a distribution I)
one state q0 in Q as the initial state. Define q0 as the
current state.

. Generation: Let q be the current state. Decide
whether to stop, with probability F ðqÞ, or to produce
a move ðq; a; q0Þ with probability P ðq; a; q0Þ, where a 2
� [f�g and q0 2 Q. Output a and set the current
state to q0.

In some cases, this process may never end, i.e., it may
generate strings of unbounded length (see Section 2.7). If
PFA generates finite-length strings, a relevant question is
that of computing the probability that a PFA A generates
a string x 2 �?. To deal with this problem, let � ¼
ðs0; x0

1; s1; x
0
2; s2; . . . ; sk�1; x

0
k; skÞ be a path for x in A; that

is, there is a sequence of transitions ðs0; x0
1; s1Þ, ðs1; x0

2; s2Þ;
. . . ; ðsk�1; x

0
k; skÞ 2 � such that x ¼ x0

1x
0
2 . . .x

0
k (note that, in

general, jxj � k because some x0
j can be �). To simplify the

notation, the symbols x0
j in the sequences of transitions

will be omitted if not needed.
The probability of generating such a path is:

PrAð�Þ ¼ Iðs0Þ �
Yk
j¼1

P ðsj�1; x
0
j; sjÞ

 !
� F ðskÞ: ð1Þ

Definition 5. A valid path in a PFA, A is a path for some
x 2 �? with probability greater than zero. The set of valid
paths in A will be denoted as �A.

In general, a given string x can be generated by A through
multiple valid paths. Let �AðxÞ denote2 the set of all the valid
paths for x in A. The probability of generating x with A is

PrAðxÞ ¼
X

�2�AðxÞ
Pr
A
ð�Þ: ð2Þ

If
P

x PrAðxÞ ¼ 1, then A defines a distribution D on �?;
otherwise, the model does not have much interest. The
conditions which guarantee this will be discussed in
Section 2.7.

A probabilistic finite-state automaton is ambiguous if a
string x exists such that j �AðxÞ j> 1.

For the PFA of Fig. 1, there is only one valid path for the
string accb: �AðaccbÞ ¼ fðq0; a; q1; c; q1; c; q1; b; q3Þg. The prob-
ability of accb is:

PrAðaccbÞ ¼ Iðq0Þ � P ðq0; a; q1Þ � P ðq1; c; q1Þ
� P ðq1; c; q1Þ � P ðq1; b; q3Þ � F ðq3Þ

¼ 1:0 � 0:125 � 0:4 � 0:4 � 0:4 � 1:0
¼ 0:008:

For the string a, there are two valid paths: �AðaÞ ¼
fðq0; a; q1Þ; ðq0; a; q2Þg. Therefore, the PFA of Fig. 1 is ambig-
uous. The probability of a is then:

PrAðaÞ ¼ Iðq0Þ � P ðq0; a; q1Þ � F ðq1Þ þ Iðq0Þ � P ðq0; a; q2Þ � F ðq2Þ
¼ 1:0 � 0:125 � 0:2þ 1:0 � 0:5 � 1:0
¼ 0:525:

The definition of DPFA directly yields:

Proposition 1. No DPFA is ambiguous.

We conclude this section by defining classes of string
distributions on the base of the corresponding generating
automata.

Definition 6. A distribution is regular if it can be generated by
some PFA.

An alternative definition could be used: A regular distribu-
tion is a probabilistic distribution on a regular language.
However, we do not assume this definition because it
would present the following problem: There would exist
regular distributions which could not be generated by any
PFA. This result can be easily derived from [32].

Definition 7. A distribution is regular deterministic if it can
be generated by some DPFA.

Definition 8. Two PFA are equivalent if they generate the same
distribution.

From the definitions of PFA and DPFA, the following
hierarchy follows:

Proposition 2. A regular deterministic distribution is also a
regular distribution.

The reverse of this proposition is not always true (see
Proposition 10, Section 4).

It is interesting to note that APFA and PPTA only
generate distributions on finite sets of strings. Moreover,

1016 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

2. In unambiguous context, �AðzÞ will be extended in Section 3 to also
mean the set of subpaths that generate a substring z, these subpaths will be
allowed to start or end in states with null initial or final probabilities,
respectively.

given any finite sample S, a PPTA can be easily constructed
which generates the empirical distribution DS [4].

2.7 Consistency of PFA

The question of consistency is “do the probabilities
provided by an automaton according to (2) sum up to 1?”
In early papers in the field, the question was supposed to be
simple [31] or, on the contrary, complex when concerned
with stochastic context-free grammars; in that setting, the
consistency can be checked by analyzing the behavior of the
underlying probability matrix [32], [49].

The conditions needed for a PFA to be consistent are
established as follows [39]:

Definition 9. A state of a PFA A is useful if it appears in at least
one valid path of �A.

Proposition 3. A PFA is consistent if all its states are useful.

Note that the condition of Proposition 3 is sufficient but not
necessary: A nonuseful state is harmless if it is inaccessible;
i.e., if no string can reach it with probability greater than zero.

Once the syntactic models and the corresponding string
distributions have been defined, we discuss in the next
section how to compute the probability of a given string in
the distribution modeled by a given probabilistic automaton.

3 PARSING ISSUES

We understand parsing as the computation of (2) in
Section 2.6. In the case of DPFA, the algorithms are simpler
than for nondeterministic PFA. In the first case, the time
computation cost of (2) (and that of (6) in this section) are
in OðjxjÞ. This computational cost does not depend on the
number of states since at each step the only possible next
state is computed with a cost in Oð1Þ. In general, as will be
discussed below, the probability that a string x is generated
by a PFA, given by (2), can be computed efficiently by
using dynamic programming. Another problem related with
parsing is the computation of the probability of a substring
in a PFA [46].

3.1 Parsing with PFA

The probabilities assigned to the paths in �A (Section 2.6)
can be used to compute efficiently PrAðxÞ. The idea is
similar to the one proposed for HMMs [50] by defining
�xði; qÞ 8q 2 Q and 0 � i � jxj as the probability of generat-
ing the prefix x1 . . .xi and reaching state q:3

�xði; qÞ ¼
X

ðs0;s1;...;siÞ2�Aðx1...xiÞ
Iðs0Þ �

Yi
j¼1

P ðsj�1; xj; sjÞ � 1ðq; siÞ;

ð3Þ

where 1ðq; q0Þ ¼ 1 if q ¼ q0 and 0 if q 6¼ q0. In this case, the
extended �A to subpaths is used.

Equation (3) can be calculated with the following
algorithm:

Algorithm 3.1. Forward Algorithm

�xð0; qÞ ¼ IðqÞ;
�xði; qÞ ¼

X
q02Q

�xði� 1; q0Þ � P ðq0; xi; qÞ; 1 � i � jxj:

For a string x 2 �?, the following proposition is
straightforward:

Proposition 4.

PrAðxÞ ¼
X
q2Q

�xðjxj; qÞ � F ðqÞ: ð4Þ

There is another way of computing PrAðxÞ by introducing
�xði; qÞ as the probability of generating the suffix xiþ1 . . .xjxj
from the state q:

�xði; qÞ ¼X
ðsi;...;sjxjÞ2�Aðxiþ1...xjxjÞ

1ðq; siÞ �
Yjxj
j¼iþ1

P ðsj�1; xj; sjÞ
 !

� F ðsjxjÞ

ð5Þ

that can be calculated by the following alorithm:
Algorithm 3.2. Backward Algorithm

�xðjxj; qÞ ¼ F ðqÞ;
�xði; qÞ ¼

X
q02Q

�xðiþ 1; q0Þ � P ðq; xi; q
0Þ; 0 � i � jxj � 1:

And, the corresponding proposition:

Proposition 5.

PrAðxÞ ¼
X
q2Q

IðqÞ � �xð0; qÞ:

The computation of � and � can be performed with a
time complexity of Oðjxj � j�jÞ, where jxj is the length of x

and j�j is the number of transitions in A.

3.2 Searching for the Optimal Path for a String in a
PFA

In (2), the probability of generating x with A is defined as a

sum of the probabilities of all valid paths that deal with x.

However, it can be interesting to search for a valid path ~��

that generates x with highest probability,

~�� ¼ argmax
�2�AðxÞ

PrAð�Þ: ð6Þ

The probability of this optimal path ~��will be denoted asfPrPrAðxÞ.
The relation between fPrPrAðxÞ from (2) has been studied
in [51] and [52]. When “good” models are used, in practice,
the probability given by (2) is often mainly distributed among
a few paths close to the optimal one. In that case, the
probability of the optimal path is an adequate approximation
to the probability given by (2).

The optimal path ~�� is of practical interest in many
pattern recognition applications since useful information
can be attached to the states and, in many cases, the
problem is to search for the information that is in the
optimal path. This path is also useful for an efficient
estimation of the parameters of the model from a training
sample (see Section 3.1 of Part II).

The computation of fPrPrAðxÞ can be efficiently performed
by defining a function �xði; qÞ 8q 2 Q, 0 � i � jxj, as the
probability of generating the prefix x1 . . .xi through the best
path and reaching state q:

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I 1017

3. It is assumed the notation:
Qj

i¼k ai ¼ 1, if j < k.

�xði; qÞ ¼ max
ðs0;s1;...;siÞ2�Aðx1...xiÞ

Iðs0Þ �
Yi
j¼1

P ðsj�1; xj; sjÞ � 1ðq; siÞ;

ð7Þ

An algorithmic solution is given by the following algorithm:
Algorithm 3.3. Viterbi Algorithm

�xð0; qÞ ¼ IðqÞ;
�xði; qÞ ¼ max

q02Q
�xði� 1; q0Þ � P ðq0; xi; qÞ; 1 � i � jxj;

with the corresponding proposition:

Proposition 6.

fPrPrAðxÞ ¼ max
q2Q

�xðjxj; qÞ � F ðqÞ:

The computation of � presents the same time complexity

as the computation of � or �, but the implementation of the

last ones may lead to numerical precision problems, which

can be easily circumvented in the implementation of the

first one by using logarithms.

3.3 Parsing with �-PFA

Given a �-PFA A ¼ hQ;�; �; I; F ; P i and a string x 2 �?, we

want to compute the probability PrAðxÞ that A generates x.
We can introduce �0

xði; qÞ in a similar way as for (3) as the

probability of generating the prefix x1 . . .xi and reaching

state q:

�0
xði; qÞ ¼

X
ðs0;s1;...;si0 Þ2�Aðx1...xiÞ

Iðs0Þ �
Yi0
j¼1

P ðsj�1; x
0
j; sjÞ � 1ðq; si0 Þ;

ð8Þ

Here, �A denotes the set of subpaths rather than full paths.

On the other hand, x0
l0 ¼ xl or x0

l0 ¼ � with 1 � l � i � i0,

1 � l0 � i0, and x01 . . .x
0
i0 ¼ x1 . . .xi. In this case, the computa-

tion of �0
xði; qÞ can be performed from �0

xði� 1; q0Þ through a

new function ��
xði; j; qÞ, that represents the probability of

generating (maybe with �-transitions) the prefix x1 . . .xi of x

and then to use j �-transitions to reach q (that is, the last

j transitions are�-transitions).This function can be defined as:

��
xði; 0; qÞ ¼

IðqÞ if i ¼ 0P
q0 �

0
xði� 1; q0Þ � P ðq0; xi; qÞ if i 6¼ 0;

(
ð9Þ

��
xði; j; qÞ ¼P

q0 �
�
xði; j� 1; q0Þ � P ðq0; �; qÞ if i � 0 and j > 0: ð10Þ

By successive application of (10) ending by (9),

��
xði; j; qÞ ¼

X
q0

��
xði; 0; q0Þ � T

j
q0;q; ð11Þ

where Tj
q0;q is the ðq0; qÞ element in the jth power of a matrix

T . This matrix is defined as Tq0;q ¼ P ðq0; �; qÞ for all q; q0 2 Q.

Therefore, Tj
q0;q is the probability to reach q from q0 using

only j �-transitions.
From (9), (10), and (11) and taking into account the

existence of all possible sequence of �-transitions:

�0
xði; qÞ ¼

X1
j¼0

��
xði; j; qÞ: ð12Þ

Finally, by applying (9) and (11) in (12)

�0
xði; qÞ ¼

X
q0 0

�0
xði� 1; q00Þ �

X
q0

P ðq00; xi; q
0Þ �
X1
j¼0

Tk
q0;q:

By taking T 0 ¼ U , the identity matrix, U � T can be
inverted in most cases and

�0
xði; qÞ ¼

X
q0 0

�0
xði� 1; q00Þ �

X
q0

P ðq00; xi; q
0Þ � ½U � T ��1

q0;q:

The probability of generating x by a �-PFA A is:

Proposition 7.

PrAðxÞ ¼
X
q2Q

�0
xðjxj; qÞ � F ðqÞ: ð13Þ

Analogous results can be obtained for the backward and
Viterbi algorithms.

The algorithms and propositions presented in the last
sections can also be derived from some results of the theory
of discrete stochastic process [53].

3.4 The Most Probable String Problem

In the previous problems, a string is given and one wishes
to compute its probability or that of a generating path.
Other related interesting problems are the most probable
string and the most probable constrained string in a PFA A [43].
The first problem consists of searching for the string with
highest probability in DA:

argmax
x2�?

PrAðxÞ: ð14Þ

The second problem is the search for a string of upper
bounded length with highest probability in DA:

argmax
x2��n

PrAðxÞ: ð15Þ

When I, F , and P are defined over QQþ, the following
propostion holds:

Proposition 8. The computation of the most probable string and
the computation of the most probable constrained string in a
PFA are NP-Hard problems.

The formal proof of Proposition 8 can be found in [43]. It
should be noted that the problem is at least NP-complete but
that the membership to NP is an open question. A similar
question is proven to be undecidable for PFA acceptors which
are different to the PFA covered in this paper [54].

However, the problem of searching for the string
associated to the most probable derivation in a PFA, that
is, given a PFA A, compute

argmax
x2�?

fPrPrAðxÞ: ð16Þ

is polynomial [43].

4 PROPERTIES

We now turn to study the properties of these models. What
are the normal forms? Are they equivalent one to the other?

1018 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Which are more expressive?... These questions may be
standard in formal language theory [55], but can lead to
unexpected results in the probabilistic case.

4.1 A Minimal Form for DPFA

A central question that arises when considering any finite

devices is that of being able to decide the equivalence

between two such devices. This is important for learning, as it

is known [56] that a class is hard to learn if the equivalence

problem is not tractable. In terms of probabilistic automata,

the question one wishes to answer is: “Given two PFA

(respectively, two DPFA), are they equivalent?”
In the case of probabilistic objects, a more natural

question may be: “Given two PFA (respectively, two DPFA),

and � > 0, are they �-equivalent, i.e., is the distance between

their distributions at most �?”
While the second question requires a concept of distance

and then will be discussed in Section 5, part of the first

question can be answered here.

4.1.1 A Nerode Theorem for DPFA

For any DPFA, A ¼ hQ;�; �; q0; F ; P i the following equiva-

lence relation over �? has trivially finite index [57]:

x 	 y () 8u 2 �? :
Pr0AðxuÞ
Pr0AðxÞ

¼ Pr0AðyuÞ
Pr0AðyÞ

; ð17Þ

where Pr0AðzÞ is the probability of the unique path of states

(s0; s1; . . . ; sjzj) for z from the initial state q0 ¼ s0:

Pr0AðzÞ ¼
Yjzj
j¼1

P ðsj�1; zj; sjÞ: ð18Þ

The construction of a minimal DPFA can be found in [57].

This construction is based on the definition of an equiva-

lence relation between strings on one hand and between

states on another. The extention of the Nerode relation over

the states of the automaton has finite index and from it the

minimal canonical DPFA can be constructed by merging

equivalent states, unique up to a state-isomorphism. This

can be done in polynomial time. In [8], an efficient

algorithm that does this is given. Also, cases where even

nondeterministic PFA can be put into canonical form (for

instance, if they are acyclic) are studied.

This enables us therefore to test the equivalence between

two DPFA: minimize each and compare. If the correspond-

ing minimal DPFA are isomorphic (a simple relabeling of

the states through their minimum prefixes is enough to test

this) then the initial DPFA are equivalent.
In the nondeterministic case, Tzeng [45] proposes an

algorithm that directly tests if two PFA are equivalent, but

no result concerning a minimal PFA is known.

4.2 Equivalence of PFA and DPFA

One expects to find standard automata results when

dealing with regular stochastic languages. For instance,

that determinism does not imply a loss of expressive power.

We prove here that this is not true. The result is mostly

known and sometimes proven elsewhere (for instance, in

[8], [39]) but the construction of the counterexample is of

use: It informs us that the mean of two deterministic regular
distributions may not be regular deterministic.

We first define the mean of deterministic regular
distributions and argue that this distribution is not
deterministic.

Definition 10 (Mean of two distributions). Given two
distributions D1 and D2 over �?, we denote D1 [D2 the
distribution D such that:

8x 2 �?;PrDðxÞ ¼ 0:5 � PrD1
ðxÞ þ 0:5 � PrD2

ðxÞ: ð19Þ

Proposition 9. Given two regular deterministic distributions D1

and D2, D1 [D2 may not be regular deterministic.

The proof of this proposition is in Appendix A.

Proposition 10. There exist distributions that can be generated
by PFA but not by DPFA.

The proof is a simple consequence of Proposition 9: Take
PFA from Fig. 2 as counterexample (see Appendix A).

4.3 Equivalence of �-PFA and PFA

Given a �-PFA, there is an equivalent PFA with no

�-transitions [58]:

Proposition 11. Given a �-PFA A, representing distribution DA,
there exists a PFA B with just one initial state such that
DA ¼ DB. Moreover B is of size at most n � sizeðAÞ with at
most n states, where n is the number of states ofA. Also, B can
be constructed from A in polynomial time.

We illustrate this proposition in Fig. 3. The first �-PFA

has been transformed into the second one that does not
contain �-transitions.

5 COMBINING DISTRIBUTIONS: AUTOMATA

PRODUCT

There can be many simple ways of combining nondetermi-

nistic PFA. But, because of the special interest DPFA

represents, it would be of singular use to have some means

of modifying deterministic regular distributions, of combin-

ing them. We give two results in this section, one relating to

the product of two automata (the coemission probability) and

the second to the computation of the weight of a language

inside a distribution.
From Proposition 9, we know that the mean of two

regular deterministic distributions may not be regular
deterministic. Thus, combining two DPFA has to be
done in a different way. We can compute the product
automaton as follows: Let A1 ¼ hQ1;�; �1; q

0
1; P1; F1i and

A2 ¼ hQ2;�; �2; q
0
2; P2; F2i be two DPFA.

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I 1019

Fig. 2. A counterexample about distributions that can be generated by

PFA but not by DPFA.

Consider the automatonA ¼ hQ1 �Q2; hq01; q02i;�; �; F ; P i,
where

� ¼ fðhq1; q2i; a; hq01; q02iÞ : ðq1; a; q01Þ 2 �1 and ðq2; a; q02Þ 2 �2g;
F ðhq; q0iÞ ¼ F1ðqÞ � F2ðqÞ;
P ðhq1; q2i; a; hq01; q02iÞ ¼ P1ðq1; a; q01Þ�P2ðq2; a; q02Þ:

This automaton affects to each string x the following score:

PrA1
ðxÞ � PrA2

ðxÞ. This product is called the coemission

probability of x by A1 and A2 [16]. The score corresponds to

the probability of generating simultaneously x by A1 and A2.

The sum over �? of these scores defines the coemission

(denoted C) between A1 and A2. This quantity is of use

when computing the distance between two distributions,

but is also of interest as it measures the interactions between

two distributions. In [16], it is provem that this is

computable for APFA. Intractability results for more

complicated architectures are proven in [17].
Formally,

CðA1;A2Þ ¼
X
x2�?

PrA1
ðxÞ � PrA2

ðxÞ: ð20Þ

We introduce one variable Xi per state in the product

automata, with intended meaning:

Xi ¼
X

u:ðq0;u;qiÞ2�A

Prðu�?Þ:

Computing CðA1;A2Þ can be done through solving the

following system:

Xi ¼
X

qj2Q;a2�:ðqj;a;qiÞ2�
Xj � P ðqj; a; qiÞ;

and when i ¼ 0

X0 ¼ 1þ
X

qj2Q;a2�:ðqj;a;qiÞ2�
Xj � P ðqj; a; qiÞ:

Solving this system of equations enables us to solve

(20) by

CðA1;A2Þ ¼
X
qi2Q

Xi � F ðqiÞ:

The same sort of techniques allows us to consider the

product automaton obtained by taking a deterministic finite-

state automaton4 A1 and a DPFA A2: Let A1 ¼ hQ1;�; �1;

q01; F1i and A2 ¼ hQ2;�; �2; q
0
2; F2; P2i.

Consider the automaton A ¼ hQ1 �Q2;�; �1; hq01; q02i;
F ; P i, where

� ¼ f hq1; q2i; a; hq01; q02i
� �

: ðq1; a; q01Þ 2 �1; ðq2; a; q02Þ 2 �2g;

F ðhq; q0iÞ ¼
F2ðq0Þ if q 2 F1

0 if q =2 F1;

�
P ðhq1; q2i; a; hq01; q02iÞ ¼ P2ðq2; a; q02Þ if ðq1; a; q01Þ 2 �1:

Note that the construction does not necessarily yield a
consistent DPFA: At every state, the sum of probabilities
might be less than 1. The construction is nevertheless of
interest and yields the following result:

Proposition 12. PrA2
ðLA1

Þ ¼ PrAð�?Þ.
The proof follows from the construction of automaton A.

This enables us to give a direct method of computing the

weight of a regular language for a regular distribution, with

a complexity which is linear in the product of the sizes of

the two automata. It should be noted that this problem has

been solved for special cases of the language LA2
by more

efficient algorithms in [46].

6 COMPARING DISTRIBUTIONS: SIMILARITY

MEASURES

Defining similarity measures between distributions is the

most natural way of comparing them. Even if the question

of exact equivalence (discussed in Section 4.1) is of interest,

in practical cases, we wish to know if the distributions are

close or not. In tasks involving the learning of PFA or DPFA,

one wants to measure the quality of the result or of the

learning process. When learning takes place from a training

sample, measuring how far the learned automaton is from a

(test) sample can also be done by comparing distributions

as a sample can be encoded as a PPTA.
There are two families of distance measures. Those that

are true distances and those that measure a cross entropy.
We study both types.

6.1 Mathematical Distances

All the definitions hereafter are seen as definitions of
distances between distributions over �?. In doing so, they
implicitly define distances between automata, but also
between automata and samples or even between samples.

The most general family of distances are referred to as
the dn distances or distances for the norm Ln:

dnðD;D0Þ ¼
X
x2�?

PrDðxÞ � PrD0 ðxÞj jn
 !1

n

:

1020 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 3. A �-PFA and its equivalent PFA.

4. We will not define these products formally here, but recommend the
reader to refer to the usual textbooks [55] if needed.

For n ¼ 1, we get a natural distance also known as the

d1 distance [36] or distance for the norm L1:

d1ðD;D0Þ ¼
X
x2�?

PrDðxÞ � PrD0ðxÞj j:

In the special case where n ¼ 2, we obtain

d2ðD;D0Þ ¼
ffiX
x2�?

ðPrDðxÞ � PrD0ðxÞÞ2
r

:

The following distance is used in [34] (under the name d

or distance for the L1 norm):

dmaxðD;D0Þ ¼ max
x2�?

PrDðxÞ � PrD0ðxÞj j:

When concerned with very small probabilities such as

those that may arise when an infinite number of strings

have non null probability, it may be more useful to use

logarithms of probabilities. In this way, two strings with

very small probabilities may influence the distance because

their relative probabilities are very different: Suppose

Pr1ðxÞ ¼ 10�7 and Pr2ðxÞ ¼ 10�9, then the effect for d1 of

this particular string will be of 99 � 10�9 whereas for the

logarithmic distance the difference will be the same as if

probabilities had been 10�1 and 10�3.
The logarithmic distance is defined as

dlogðD;D0Þ ¼ max
x2�?

logPrDðxÞ � logPrD0ðxÞj j:

It should be noticed that the logarithmic distance is

infinite when the probability of a string is null in one

distribution and strictly positive in the other one.

6.2 Entropy-Based Measures

Similar to the log distance is the well-known Kullback-

Leibler divergence:

dKLðD;D0Þ ¼
X
x2�?

Pr
D
ðxÞ � log PrDðxÞ

PrD0ðxÞ :

We set in a standard way that 0 log 0 ¼ 0 and 0
0 ¼ 1 and

assume log to represent base two logarithms.

It should be noticed that, in the case where some string

has a null probability in D0, but not in D, then the Kullback-

Leibler divergence becomes infinite.
Rewriting the Kullback-Leibler divergence as

dKLðD;D0Þ ¼
X
x2�?

ðPrDðxÞ � logPrDðxÞ � PrDðxÞ � logPrD0ðxÞÞ;

one can note the first term is the entropy of D and does not

depend on D0 and the second term is the cross entropy of D
and D0. From the information theory interpretation [59], the

first term measures the optimal number of bits needed to

encodeD and the second one measures the cost (in number of

bits of encoding) one must pay when estimating D using D0.

To fix the ideas, a divergence of 1 (i.e., dKLðD;D0Þ ¼ 1) will

mean that the average optimal number of bits needed to code

a message of �? distributed according to D using D0 will be

one more than the optimal code obtained using D.

Let us now consider the random variables X and X0 from

�? to ½0; 1� such that XðxÞ ¼ PrDðxÞ and X0ðxÞ ¼ PrD0 ðxÞ, the

Kullback-Leibler divergence can be expressed as:

dKLðD;D0Þ ¼ ED log
X

X0

� �
: ð21Þ

From this writing, we can see that the Kullback-Leibler

divergence has some of the logarithmic distance properties.

6.3 Some Properties

. dn, dmax, dlog are distances, i.e., they comply with the
usual properties. 8D;D0; 8X 2 fn;max; logg:

- dXðD;D0Þ ¼ 0 () D ¼ D0;
- dXðD;D0Þ ¼ dXðD0;DÞ; and
- dXðD;D0Þ þ dXðD0;D00Þ � dXðD;D00Þ (for dlog, as-

sume D, D0, and D00 are null on the same subset
of �?).

. Obviously, 8D;D0 : dmaxðD;D0Þ � d1ðD;D0Þ.

. dKL is not a mathematical distance. It nevertheless
verifies the following properties 8D;D0:

- dKLðD;D0Þ � 0,
- dKLðD;D0Þ ¼ 0 () D ¼ D0, and
- dKLðD;D0Þ � 1

2ln2 ðd1ðD;D0ÞÞ2.

6.4 Computing Distances

We consider the following problem: Given D and D0,

compute the distance dXðD;D0Þ between them.
Main positive results include:

Proposition 13. If D and D0 are given by DPFA, the computation

of d2ðD;D0Þ can be done in polynomial time.

The proof of this proposition is reported in the

Appendix B.

Proposition 14 [44]. If D and D0 are given by DPFA, the

computation of dKLðD;D0Þ can be done in polynomial time.

6.5 Estimating Distances

In some places, it is interesting either to compare a

theoretical distribution with the empirical one, or to

compare different distributions with respect to an empirical

one. For the first purpose, we can use the following lemma:

Lemma 1 [34, Lemma 14]. Let D be any distribution on �?, and

S a sample of size jSj, then for a > 1,

Pr dmaxðD; SÞ �
ffi
6aðlog jSjÞ=jSj

p� �
� 1� 4jSj�a:

In case one wants to learn—or estimate—distributions,

this result is commonly used to compare the different

learning algorithms: A sample of the target distribution is

built and a distance between the learned distribution and

the sample is computed.

In applications such as language modeling [60] or

statistical clustering [61], [62], a distance based on the

Kullback-Leibler divergence is commonly used to compare

estimators. LetD be the target distribution andA a model. As

previously noted, this distance can be decomposed as the

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I 1021

entropy of D and the cross-entropy of DA with respect to D,

XðD;DAÞ:

XðD;DAÞ ¼ �
X
x2�?

PrDðxÞ � logPrAðxÞ:

Since D is generally unknown, it is replaced by an

adequate empirical estimate DS , based on a sample S. Let S0

denote the set which contains the unique elements of the

sample S (removing the repetitions). The corresponding

empirical cross-entropy can then be written as:

bXXðS;DAÞ ¼ �
X
x2S0

PrDS
ðxÞ � logPrAðxÞ

¼ �
X
x2S0

fðxÞ
jSj � logPrAðxÞ;

where fðxÞ is the number of occurrences of x in S. Finally,

using “x 2 S” in multiset notation, we have:

X̂XðS;DAÞ ¼ � 1

jSj
X
x2S

logPrAðxÞ: ð22Þ

Another measure often used in the language model

community is the perplexity of S for a given model A. It is

computed using (22) as:

PP ðSjAÞ ¼ 2X̂XðS;DAÞ; ð23Þ
which can also be wriiten as:

PP ðSjAÞ ¼
�Y
x2S

PAðxÞ
�� 1

jSj

: ð24Þ

In practice, rather than the entropy (or perplexity) per

string given by the previous equations, the entropy (or the

perplexity) per symbol is often preferred [3]. It can be obtained

approximately by replacing jSj with jjSjj in (22) (or (24)).
The properties of the perplexity can be summarized as

follows:

. Equation (22) says that the cross-entropy measures
the average number of bits one must pay by using
the model A instead of D while coding the sample S.

. From (23), the perplexity measures the corresponding
average number of choices entailed by this coding.

. From (24), the perplexity can be seen as the inverse
of the geometric mean of the probabilities of the
sample strings according to the model.

On the other hand, in practical work, the following

properties must be carefully taken into account:

. Perplexity and entropy diverge as soon as one of the
probabilities according to A is zero. In practice, this
implies that the perplexity can only be used if A is
smoothed, i.e., it provides a non null probability for
every string of �?.

. Obviously, perplexity and entropy only make sense
if (the smoothed version of) A is really a probabilistic
model, i.e.,

P
x2�? PrAðxÞ ¼ 1.

. The perplexity can compare models only using the
same sample S.

7 CONCLUSION

We have provided in this first part a number of results
centered on the probabilistic automata and distributions
themselves. It remains to study the relationships between
these models and other important models that can be found
in the literature. Also, the important task of approximating,
learning, or identifying these models, all central problems
to structural pattern recognition, need to be explored. All
this will be done in Part II of this paper [40].

APPENDIX A

PROOF OF THE PROPOSITION 9

Proposition 9. Given two regular deterministic distributions D1

and D2, D1 [D2 may not be regular deterministic.

Proof. Consider distribution D1 defined by the following
DPFA:

ðq0; a; q1Þ 2 �1; P1ðq0; a; q1Þ ¼ 1; F1ðq0Þ ¼ 0
ðq1; a; q1Þ 2 �1; P1ðq1; a; q1Þ ¼ 1

2 ; F1ðq1Þ ¼ 1
2 ;

and distribution D2 defined by

ðq00; a; q01Þ 2 �2; P2ðq00; a; q01Þ ¼ 1; F2ðq00Þ ¼ 0
ðq01; a; q01Þ 2 �2; P2ðq01; a; q01Þ ¼ 1

3 ; F2ðq01Þ ¼ 2
3 :

But no DPFA can implement D1 [D2. Suppose such an
automaton exists and call it A with A ¼ hQ;�; q0; �; F ; P i;
There would (because of determinism) have to be some n
for which:

ðsi; a; siþ1Þ 2 �; for all 0 � i < n

ðsn; a; skÞ 2 �;with 0 � k � n:

Denote l ¼ n� kþ 1 (the length of the cycle). The
automaton (see Fig. 4) consists of a string of k states (with
eventually k ¼ 0) followed by a cycle of l states (with l > 0,
as there is an infinity of strings with non null probability).

Let h : k � h � n ^ PrAðahÞ 6¼ 0 (such an h exists
because of consistency).

PrðahÞ ¼ ph � fh;

where

ph ¼
Yh�1

i¼0

PAðsi; a; siþ1Þ and fh ¼ F ðshÞ

and

PrðahþlÞ ¼ ph � ploop � fh;

where

ploop ¼ P ðsn; a; skÞ �
Yn�1

i¼k

P ðsi; a; siþ1Þ

1022 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 4. The general shape of a DPFA over a one letter alphabet.

and finally,

Prðahþ2lÞ ¼ ph � ploop � ploop � fh:

It follows that:

ploop ¼
PrAðahþlÞ
PrAðahÞ

¼ PrAðahþ2lÞ
PrAðahþlÞ :

Thus, for the distribution D1 [D2,

1
2hþlþ1 þ 1

3hþl

1
2hþ1 þ 1

3h
¼

1
2hþ2lþ1 þ 1

3hþ2l

1
2hþlþ1 þ 1

3hþl

:

Simplifying:	
1

2hþlþ1 þ 1
3hþl

2

¼
	

1
2hþ2lþ1 þ 1

3hþ2l

�
	

1
2hþ1 þ 1

3h

) 2 � 1

2hþlþ1 � 1
3hþl ¼ 1

2hþ2lþ1 � 1
3h
þ 1

2hþ1 � 1
3hþ2l

) 2 � 1
2l
� 1
3l

¼ 1
22l

1
32l

) 2l�1 � 3l ¼ 22l þ 32l:

If l > 1 the right-hand side of the equation is odd and

the left-hand side is even, we end up with a clear

contradiction. And, if l ¼ 1, we solve and reach 3 ¼ 13

which is also a contradiction. tu

APPENDIX B

PROOF OF THE PROPOSITION 13

Proposition 13. If D and D0 are given by DPFA, the computation
of d2ðD;D0Þ can be done in polynomial time.

Proof. In the following, CðA1; A2Þ matches the definition (20)

in Section 5:

d2ðD;D0Þ ¼

¼
 X

w2�?

jPrDðwÞ � PrD0 ðwÞj2
!1

2

¼
 X

w2�?

ðPrDðwÞ � PrD0ðwÞÞ2
!1

2

¼
 X

w2�?

PrDðwÞ�PrDðwÞþPrD0 ðwÞ�PrD0ðwÞ�2PrDðwÞ�PrD0ðwÞ
!1

2

¼
 X

w2�?

PrDðwÞ2 þ
X
w2�?

PrD0ðwÞ2 � 2
X
w2�?

PrDðwÞ � PrD0ðwÞ
!1

2

¼ CðD;DÞ þ CðD0;D0Þ � 2CðD;D0Þð Þ
1
2:

If D and D0 are given by DPFA, the above can be
solved in polynomial time. tu

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their careful reading and in-depth criticisms and suggestions.
This work has been partially supported by the Spanish
project TIC2003-08681-C02 and the IST Programme of the

European Community, under the PASCAL Network of

Excellence, IST-2002-506778. This publication only reflects

the authors’ views.

REFERENCES

[1] A. Paz, Introduction to Probabilistic Automata. New York: Academic
Press, 1971.

[2] L. Rabiner, “A Tutorial n Hidden Markov Models and Selected
Applications in Speech Recoginition,” Proc. IEEE, vol. 77, pp. 257-
286, 1989.

[3] F. Jelinek, Statistical Methods for Speech Recognition. Cambridge,
Mass.: MIT Press, 1998.

[4] R. Carrasco and J. Oncina, “Learning Stochastic Regular Grammars
by Means of a State Merging Method,” Proc. Second Int’l Colloquium
Grammatical Inference and Applications, pp. 139-152, 1994.

[5] L. Saul and F. Pereira, “Aggregate and Mixed-Order Markov
Models for Statistical Language Processing,” Proc. Second Conf.
Empirical Methods in Natural Language Processing, pp. 81-89, 1997.

[6] H. Ney, S. Martin, and F. Wessel, “Statistical Language Modeling
Using Leaving-One-Out,” Corpus-Based Statistical Methods in
Speech and Language Processing, S. Young and G. Bloothooft, eds.,
pp. 174-207, Kluwer Academic, 1997.

[7] D. Ron, Y. Singer, and N. Tishby, “Learning Probabilistic
Automata with Variable Memory Length,” Proc. Seventh Ann.
ACM Conf. Computational Learning Theory, pp. 35-46, 1994.

[8] M. Mohri, “Finite-State Transducers in Language and Speech
Processing,” Computational Linguistics, vol. 23, no. 3, pp. 269-311,
1997.

[9] K.S. Fu, Syntactic Pattern Recognition and Applications. Prentice Hall,
1982.

[10] L. Miclet, Structural Methods in Pattern Recognition. Springer-
Verlag, 1987.

[11] S. Lucas, E. Vidal, A. Amari, S. Hanlon, and J.C. Amengual, “A
Comparison of Syntactic and Statistical Techniques for Off-Line
OCR,”Proc. Second Int’l ColloquiumonGrammatical Inference,pp. 168-
179, 1994.

[12] D. Ron, Y. Singer, and N. Tishby, “On the Learnability and Usage
of Acyclic Probabilistic Finite Automata,” Proc. Eighth Ann. Conf.
Computational Learning Theory, pp. 31-40, 1995.

[13] H. Ney, “Stochastic Grammars and Pattern Recognition,” Proc.
NATO Advanced Study Inst. “Speech Recognition and Understanding.
Recent Advances, Trends, and Applications,” pp. 313-344, 1992.

[14] N. Abe and H. Mamitsuka, “Predicting Protein Secondary
Structure Using Stochastic Tree Grammars,” Machine Learning,
vol. 29, pp. 275-301 1997

[15] Y. Sakakibara, M. Brown, R. Hughley, I. Mian, K. Sjolander, R.
Underwood, and D. Haussler, “Stochastic Context-Free Gram-
mars for tRNA Modeling,” Nuclear Acids Research, vol. 22, pp. 5112-
5120, 1994.

[16] R.B. Lyngsø, C.N.S. Pedersen, and H. Nielsen, “Metrics and
Similarity Measures for Hidden Markov Models,” Proc. Intelligent
Systems for Molecular Biology, 1999.

[17] R.B. Lyngsø and C.N.S. Pedersen, “Complexity of Comparing
Hidden Markov Models,” Proc. 12th Ann. Int’l Symp. Algorithms
and Computation, 2001.

[18] P. Cruz and E. Vidal, “Learning Regular Grammars to Model
Musical Style: Comparing Different Coding Schemes,” Proc. Int’l
Colloquium on Grammatical Inference, pp. 211-222, 1998.

[19] M.G. Thomason, “Regular Stochastic Syntax-Directed Transla-
tions,” Technical Report CS-76-17, Computer Science Dept., Univ.
of Tennessee, Knoxville, 1976.

[20] M. Mohri, F. Pereira, and M. Riley, “The Design Principles of a
Weighted Finite-State Transducer Library,” Theoretical Computer
Science, vol. 231, pp. 17-32, 2000.

[21] H. Alshawi, S. Bangalore, and S. Douglas, “Learning Dependency
Translation Models as Collections of Finite State Head Transdu-
cers,” Computational Linguistics, vol. 26, 2000.

[22] H. Alshawi, S. Bangalore, and S. Douglas, “Head Transducer
Model for Speech Translation and their Automatic Acquisition
from Bilingual Data,” Machine Translation J., vol. 15, nos. 1-2,
pp. 105-124, 2000.

[23] J.C. Amengual, J.M. Benedı́, F. Casacuberta, A.C. No, A. Castella-
nos, V.M. Jimenez, D. Llorens, A. Marzal, M. Pastor, F. Prat, E.
Vidal, and J.M. Vilar, “The EUTRANS-I Speech Translation
System,” Machine Translation J., vol. 15, no. 1-2, pp. 75-103, 2000.

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I 1023

[24] S. Bangalore and G. Riccardi, “Stochastic Finite-State Models for
Spoken Language Machine Translation,” Proc. Workshop Embedded
Machine Translation Systems, NAACL, pp. 52-59, May 2000.

[25] S. Bangalore and G. Riccardi, “A Finite-State Approach to
Machine Translation,” Proc. North Am. Assoc. Computational
Linguistics, May 2001.

[26] F. Casacuberta, H. Ney, F.J. Och, E. Vidal, J.M. Vilar, S. Barrachina,
I. Garcia-Varea, D. Llorens, C. Martinez, S. Molau, F. Nevado, M.
Pastor, D. Picó, A. Sanchis, and C. Tillmann, “Some Approaches to
Statistical and Finite-State Speech-to-Speech Translation,” Compu-
ter Speech and Language, 2003.

[27] L. Bréhélin, O. Gascuel, and G. Caraux, “Hidden Markov Models
with Patterns to Learn Boolean Vector Sequences and Application
to the Built-In Self-Test for Integrated Circuits,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 997-
1008, Sept. 2001.

[28] Y. Bengio, V.-P. Lauzon, and R. Ducharme, “Experiments on the
Application of IOHMMs to Model Financial Returns Series,” IEEE
Trans. Neural Networks, vol. 12, no. 1, pp. 113-123, 2001.

[29] K.S. Fu, Syntactic Methods in Pattern Recognition. New-York:
Academic Press, 1974.

[30] J.J. Paradaens, “A General Definition of Stochastic Automata,”
Computing, vol. 13, pp. 93-105, 1974.

[31] K.S. Fu and T.L. Booth, “Grammatical Inference: Introduction and
Survey Parts I and II,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 5, pp. 59-72 and pp. 409-423, 1975.

[32] C.S. Wetherell, “Probabilistic Languages: A Review and Some
Open Questions,” Computing Surveys, vol. 12, no. 4, 1980.

[33] F. Casacuberta, “Some Relations among Stochastic Finite State
Networks Used in Automatic Speech Recogntion,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 691-695,
July 1990.

[34] D. Angluin, “Identifying Languages from Stochastic Examples,”
Technical Report YALEU/DCS/RR-614, Yale Univ., Mar. 1988

[35] M. Kearns and L. Valiant, “Cryptographic Limitations on
Learning Boolean Formulae and Finite Automata,” Proc. 21st
ACM Symp. Theory of Computing, pp. 433-444, 1989.

[36] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire, and
L. Sellie, “On the Learnability of Discrete Distributions,” Proc. 25th
Ann. ACM Symp. Theory of Computing, pp. 273-282, 1994.

[37] M. Kearns and U. Vazirani, An Introduction to Computational
Learning Theory. MIT Press, 1994.

[38] N. Abe and M. Warmuth, “On the Computational Complexity of
Approximating Distributions by Probabilistic Automata,” Proc.
Third Workshop Computational Learning Theory, pp. 52-66, 1998.

[39] P. Dupont, F. Denis, and Y. Esposito, “Links between Probabilistic
Automata and Hidden Markov Models: Probability Distributions,
Learning Models and Induction Algorithms,” Pattern Recognition,
2004.

[40] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R.C.
Carrasco, “Probabilistic Finite-State Automata—Part II,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 7,
pp. 1026-1039, July 2005.

[41] M.O. Rabin, “Probabilistic Automata,” Information and Control,
vol. 6, no. 3, pp. 230-245, 1963.

[42] G.D. Forney, “The Viterbi Algorithm,” IEEE Proc., vol. 3, pp. 268-
278, 1973.

[43] F. Casacuberta and C. de la Higuera, “Computational Complex-
ity of Problems on Probabilistic Grammars and Transducers,”
Proc. Fifth Int’l Colloquium on Grammatical Inference, pp. 15-24,
2000.

[44] R.C. Carrasco, “Accurate Computation of the Relative Entropy
between Stochastic Regular Grammars,” RAIRO-Theoretical Infor-
matics and Applications, vol. 31, no. 5, pp. 437-444, 1997.

[45] W.-G. Tzeng, “A Polynomial-Time Algorithm for the Equivalence
of Probabilistic Automata,” SIAM J. Computing, vol. 21, no. 2,
pp. 216-227, 1992.

[46] A. Fred, “Computation of Substring Probabilities in Stochastic
Grammars,” Proc. Fifth Int’l Colloquium Grammatical Inference:
Algorithms and Applications, pp. 103-114, 2000.

[47] M. Young-Lai and F.W. Tompa, “Stochastic Grammatical In-
ference of Text Database Structure,” Machine Learning, vol. 40,
no. 2, pp. 111-137, 2000.

[48] D. Ron and R. Rubinfeld, “Learning Fallible Deterministic Finite
Automata,” Machine Learning, vol. 18, pp. 149-185, 1995.

[49] C. Cook and A. Rosenfeld, “Some Experiments in Grammatical
Inference,” NATO ASI Computer Orientation Learning Process,
pp. 157-171, 1974.

[50] K. Knill and S. Young, “Hidden Markov Models in Speech and
Language Processing,” Corpus-Based Statistical Methods in Speech
and Language Processing. S. Young and G. Bloothoof, eds., Kluwer
Academic, pp. 27-68, 1997.

[51] N. Merhav and Y. Ephraim, “Hidden Markov Modeling Using a
Dominant State Sequence with Application to Speech Recogni-
tion,” Computer Speech and Language, vol. 5, pp. 327-339, 1991.

[52] N. Merhav and Y. Ephraim, “Maximum Likelihood Hidden
Markov Modeling Using a Dominant State Sequence of States,”
IEEE Trans, Signal Processing, vol. 39, no. 9, pp. 2111-2115, 1991.

[53] R.G. Galleguer, Discrete Stochastic Processes. Kluwer Academic,
1996.

[54] V.C.V.D. Blondel, “Undecidable Problems for Probabilistic Auto-
mata of Fixed Dimension,” Theory of Computing Systems, vol. 36,
no. 3, pp. 231-245, 2003.

[55] M.H. Harrison, Introduction to Formal Language Theory. Reading,
Mass.: Addison-Wesley, 1978.

[56] C. de la Higuera, “Characteristic Sets for Polynomial Grammatical
Inference,” Machine Learning, vol. 27, pp. 125-138, 1997.

[57] R. Carrasco and J. Oncina, “Learning Deterministic Regular
Grammars from Stochastic Samples in Polynomial Time,”
RAIRO-Theoretical Informatics and Applications, vol. 33, no. 1,
pp. 1-20, 1999.

[58] C. de la Higuera, “Why �-Transitions Are Not Necessary in
Probabilistic Finite Automata,” Technical Report 0301, EURISE,
Univ. of Saint-Etienne, 2003.

[59] T. Cover and J. Thomas, Elements of Information Theory. Wiley
Interscience, 1991.

[60] J. Goodman, “A Bit of Progress in Language Modeling,” technical
report, Microsoft Research, 2001.

[61] R. Kneser and H. Ney, “Improved Clustering Techniques for
Class-Based Language Modelling,” Proc. European Conf. Speech
Comm. And Technology, pp. 973-976, 1993.

[62] P. Brown, V. Della Pietra, P. deSouza, J. Lai, and R. Mercer, “Class-
Based N-Gram Models of Natural Language,” Computational
Linguistics, vol. 18, no. 4, pp. 467-479, 1992.

Enrique Vidal received the Doctor en Ciencias
Fisicas degree in 1985 from the Universidad de
Valencia, Spain. From 1978 to 1986, he was
with this university serving in computer system
programming and teaching positions. In the
same period, he coordinated a research group
in the fields of pattern recognition and automatic
speech recognition. In 1986, he joined the
Departamento de Sistemas Informáticos y
Computación of the Universidad Politécnica de

Valencia (UPV), where he served as a full professor of the Facultad de
Informática. In 1995, he joined the Instituto Tecnológico de Informática,
where he has been coordinating several projects on pattern recognition
and machine translation. He is coleader of the pattern recognition and
human language Technology group of the UPV. His current fields of
interest include statistical and syntactic pattern recognition and their
applications to language, speech, and image processing. In these fields,
he has published more than 100 papers in journals, conference
proceedings, and books. Dr. Vidal is a member of the Spanish Society
for Pattern Recognition and Image Analysis (AERFAI), the International
Association for Pattern Recognition (IAPR), and the IEEE Computer
Society.

Franck Thollard received the masters of
computer science in 1995 from the University
of Montpellier, France. He received the PhD
degree in computer science from the University
of Saint-Etienne in 2000. He worked at the
University of Tuebingen, Germany, and at the
University of Geneva, Switzeland, under the
Learning Computational Grammar European
Project. Since 2002, he has been working as a
lecturer with the EURISE research team. His

current research interests include machine learning and its application to
natural language processing (e.g., language modeling, parsing, etc.).

1024 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Colin de la Higuera received the master and
PhD degrees in computer science from the
University of Bordeaux, France, in 1985 and
1989, respectively. He worked as Maitre de
Conférences (senior lecturer) from 1989 to
1997 at Montpellier University and, since
1997, has been a professor at Saint-Etienne
University, where he is director of the EURISE
research team. His main research theme is
grammatical inference and he has been serving

as chairman of the ICGI (International Community in Grammatical
Inference) since 2002.

Francisco Casacuberta received the master
and PhD degrees in physics from the University
of Valencia, Spain, in 1976 and 1981, respec-
tively. From 1976 to 1979, he worked with the
Department of Electricity and Electronics at the
University of Valencia as an FPI fellow. From
1980 to 1986, he was with the Computing Center
of the University of Valencia. Since 1980, he has
been with the Department of Information Sys-
tems and Computation of the Polytechnic Uni-

versity of Valencia, first as an associate professor and, since 1990, as a
full professor. Since 1981, he has been an active member of a research
group in the fields of automatic speech recognition and machine
translation (Pattern Recognition and Human Language Technology
group). Dr. Casacuberta is a member of the Spanish Society for Pattern
Recognition and Image Analysis (AERFAI), which is an affiliate society
of IAPR, the IEEE Computer Society, and the Spanish Association for
Artificial Intelligence (AEPIA). His current research interests include the
areas of syntactic pattern recognition, statistical pattern recognition,
machine translation, speech recognition, and machine learning.

Rafael C. Carrasco received a degree in
physics from the University of Valencia in
1987. He received the PhD degree in theoretical
physics from the University of Valencia in 1991
and another PhD degree in computer science
from the University of Alicante in 1997. In 1992,
he joined the Departamento de Lenguajes y
Sistemas Informáticos at the University of
Alicante as a professor teaching formal lan-
guages and automata theory, algorithmics, and

markup languages. Since 2002, he has lead the technology section of
the Miguel de Cervantes digital library (http://www.cerantesvirtual.com).
His research interests include grammar induction from stochastic
samples, probabilistic automata, recurrent neural networks and rule
encoding, markup languages and digital libraries, finite-state methods in
automatic translation, and computer simulation of photonuclear reac-
tions.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

VIDAL ET AL.: PROBABILISTIC FINITE-STATE MACHINES—PART I 1025

