
Language Processing note 10 CS2 9.12.2002

CS2 Language Processing note 10

Table-driven predictive parsers

The overall picture

In the last note we saw that top-down parsing can be done quite straightfor-
wardly provided our grammar possesses certain good properties — in fact, pro-
vided it is what is called an LL(1) grammar. This is because for these grammars
it is possible to draw up a parse table telling us which rule to apply in any given
situation; once we have such a parse table, our method of top-down parsing
can proceed completely automatically. We also saw that certain naturally arising
grammars (such as the grammar with two kinds of if statements) are not LL(1)
as they stand, and so are not immediately suitable for predictive parsing.

Typically, given a context-free grammar G, we can build a parser for the lan-
guage L(G) by carrying out the following three steps:

1. If G is not already an LL(1) grammar, transform G into an equivalent gram-
mar G0 which is LL(1), by eliminating problematic features such as ambi-
guity, left recursion, and common prefixes as in the if example.

2. Given an LL(1) grammar G0, calculate the parse table for G0.

3. Implement a simple algorithm for parsing a given sentence with the help of
the parse table for G0.

In the rest of this thread, we will consider these three stages in more detail.

There is no fully automatic method for stage 1 — this stage typically requires
human understanding of what the language is supposed to mean and how it is
to be used. Nevertheless, there are some useful methods and general principles
that can help, and we will be covering these in Note 11. Stage 2 is fairly easy to
carry out by hand for small grammars, but for larger examples it is preferable
to use an automatic method for calculating the parse table, and we will present
such a method in Note 12. For the remainder of this note, we will describe stage 3
in more detail. The algorithm in question is essentially the method of top-down
parsing that we have already described in Note 9, but here we will be a little more
concrete about what parse tables are, and how a table-driven predictive parser
may be implemented in an efficient way.

Notice that the algorithm for stage 3 is executed every time we use the parser
to parse a sentence, whereas stages 1 and 2 are carried out “once and for all”

1

Language Processing note 10 CS2 9.12.2002

(for the language in question) when we are building our parser. However, the
implementation of stage 3 is obviously part of the parser construction phase.

What is more, the algorithm here is the same whatever the language — in
order to configure it for a particular grammar, we just need to supply an ap-
propriate parse table. In other words, it is possible to build a general parsing
engine that can take a parse table for a grammar and use that to parse input
sentences. This means that extra effort spent on making the parsing engine cor-
rect, efficient and robust is well repaid over time, since it can be reused for many
different languages.

Parse tables

Recall the following grammar from Note 9 for the simple circuit description lan-
guage.

C → seq B | par B | value B → C B | end

Call this grammar G1. We have already seen how G1 is suitable for predictive
parsing: studying one input token at a time is always enough to decide how to
expand any nonterminal. For example, if a predictive parser is looking to expand
C, and sees token seq, then it should apply the production C → seq B; if it sees
par, then production C → par B is right.

All the information about what steps a predictive parser should take can be
summarised in a parse table such as the following.

G1 seq par value end

C C → seq B C → par B C → value

B B → C B B → C B B → C B B → end

This is a matrix indexed by nonterminals and terminals, with each entry being
a production from the grammar. For example, looking up (B,end) we get B →
end, which means that is the production to apply to expand B when the next
input token is end. More interestingly, it shows that a parser should expand
nonterminal B using B → C B on seeing either seq, par, or value; the point being
that the C can then be further expanded using productions from the top row of
the table.

Empty cells in the table show that some nonterminal/terminal combinations
should never arise: here a circuit C can never begin with the keyword end.

Notice that every production in the C row has C on its left-hand side; similarly
every production in row B expands B. This is always true of predictive parse
tables, so to save space in later ones we shall write only the right-hand side of
productions. Similarly, we leave out any columns where every cell is empty.

Here is another grammar G2 and corresponding parse table. This describes
a language of nested lists like {x, (x,x), x} and (((x))). Every list must have at

2

Language Processing note 10 CS2 9.12.2002

least one element, and can use both parentheses () and braces {} provided they
always match.

term → braces | parens braces → {list} list → term rest rest →, list | ε
parens → (list) list → x rest

G2 { } () x ,

term braces parens

braces {list}
parens (list)

list term rest term rest x rest

rest ε ε , list

When a grammar is suitable for predictive parsing, a parse table like this con-
tains all the information necessary to carry out parsing. In Note 12 we shall see
how to compute parse tables; but first we look at how they can be used to drive
an automatic parser.

Table-driven parsing

We consider a predictive parsing engine that uses a stack to keep track of its
activity. The stack holds a sequence of terminal and nonterminal symbols, which
record what work remains to be done. (More precisely, the stack records what
we are expecting the remainder of the input to look like.) As parsing proceeds,
the engine adds and removes symbols at the top of the stack. The engine also
has access to the input string which it consumes one token at a time.

As an example, suppose we wish to parse the sentence (x) using the gram-
mar G2. We can illustrate the initial state of the parser as follows.

Input Stack

(x) term

At the start of parsing the working stack holds only the start symbol. The parse
engine now takes repeated steps according to the following instructions.

• If the symbol at the top of the stack is a terminal, then it should match the
current input symbol. If so, then discard both tokens and proceed. If they
do not match, report an error of the form “Expected ‘a’ but found ‘b’ ”.

• If the symbol at the top of the stack is a nonterminal A, and the current
input symbol is a, then look up the entry (A,a) in the parse table. This
should give an appropriate production A → t: replace A by t on top of the
stack and proceed.
If the entry (A,a) is empty, signal an error of the form “When trying to process
an ‘A’, found ‘a’ and no production applies”.

3

Language Processing note 10 CS2 9.12.2002

• If the end of the input is reached before the stack is empty, signal an error
of the form “End of input reached where s expected”, where s is the symbol
at the top of the stack. Likewise, if the stack is emptied before the end of
input is reached, signal an appropriate error message.

With a valid sentence, this will continue until the stack is emptied and the whole
input string is consumed (with these two events happening at the same time). If
the sentence is invalid, then one of the errors above will be reported.

Applying this algorithm to the example above, the parse engine takes the
following steps. The top of the working stack is to the left, and as we go along we
show the productions used and the derivation this produces.

Input Stack Productions Derivation
(x) term term → parens term ⇒ parens
(x) parens parens → (list) ⇒ (list)
(x) (list)

x) list) list → x rest ⇒ (x rest)
x) x rest)

) rest) rest → ε ⇒ (x)
))

Parse tree
term

��

parens
��

{{w

w

w

w

% %

K

K

K

K

K

(list
��

% %

L

L

L

L

)

x rest
��

ε

You should work through each line of this table, checking against the instruc-
tions above to see what happens at every step. Notice how each production
corresponds to an unfolding of the parse tree; at the end we can read the original
sentence off round its fringe.

At every point during parsing, the working stack holds a sentential form that
should match the remaining input. This is the extensible memory that makes our
parser more powerful than any finite state machine. For instance, the stack here
records how many brackets of each kind still need to be matched. A machine
that can use a stack in this way is sometimes known as a pushdown automaton.

Semantic actions

When a parser is part of some complete language processor, we usually want a
more detailed result than just success or failure. A general approach to this is
to attach a semantic action to each production. When the parsing engine applies
a production, it carries out the relevant semantic action, and together these
compute the desired output value. Often, semantic actions are used to build an
abstract syntax tree, a stripped-down version of the parse tree. This discards
all the syntactic fluff of semicolons, parentheses and extra nonterminals, and
contains only the bare structure necessary for further interpretation.

John Longley 2002, Ian Stark 2001

4

