Lecture 1

Course Roadmap and Historical Perspective

The goal of this course is to understand the foundations of computation.
We will ask some very basic questions, such as

¢ What does it mean for a function to be computable?
¢ Are there any noncomputabie functions?

* How does computational power depend on programming constructs?

These questions may appear simple, but they are not. They have intrigued
scientists for decades, and the subject is still far from closed.

In the quest for answers to these questions, we will encounter some fun-
damental and pervasive concepts along the way: state, transition, nonde-
terminism, reduction, and undecidability, to name a few. Some of the most
important achievements in theoretical computer science have been the Crys-
tallization of these concepts. They have shown a remarkable persistence,
even as technology changes from day to day. They are crucial for every
good computer scientist to know, so that they can be recognized when they
are encountered, as they surely will be. P

Various models of computation have been proposed over the years, all
of which capture some fundamental aspect of computation. We will con-
centrate on the following three classes of models, in order of increasing
power:

4 Lecture 1

(i) finite memory: finite automata, regular expressions;
(ii) finite memory with stack: pushdown automata;

(iii) unrestricted:

e Turing machines (Alan Turing [120]),

Post systems (Emil Post [99, 100]),

e p-recursive functions (Kurt Godel [51], Jacques Herbrand),

A-calculus (Alonzo Church [23], Stephen C. Kleene [66]),

combinatory logic (Moses Schonfinkel [111], Haskell B. Curry
[29]).

These systems were developed long before computers existed. Nowa-
days one could add PASCAL, FORTRAN, BASIC, LISP, SCHEME,
C++, JAVA, or any sufficiently powerful programming language to
this list.

In parallel with and independent of the development of these models of
computation, the linguist Noam Chomsky attempted to formalize the no-
tion of grammar and language. This effort resulted in the definition of the
Chomsky hierarchy, a hierarchy of language classes defined by grammars of
increasing complexity:

(i) right-linear grammars;
(ii) context-free grammars;

(iii) unrestricted grammars.

Although grammars and machine models appear quite different on a super-
ficial level, the process of parsing a sentence in a language bears a strong
resemblance to computation. Upon closer inspection, it turns out that each
of the grammar types (i), (i), and (iii) are equivalent in computational
power to the machine models (i), (ii), and (iil) above, respectively. There
is even a fourth natural class called the contexi-sensitive grammars and
languages, which fits in between (if) and (iii) and which corresponds to a
certain natural class of machine models called linear bounded automata.

It is quite surprising that a naturally defined hierarchy in one field should

correspond so closely to a naturally defined hierarchy in a completely dif
ferent field. Could this be mere coincidence?

R e

Course Roadmap and Historical Perspective 5

Abstraction

The machine models mentioned above were first identified in the same way
that theories in physics or any other scientific discipline arise. When study-
ing real-world phenomena, one becomes aware of recurring patterns and
themes that appear in various guises. These guises may differ substantially
on a superficial level but may bear enough resemblance to one another to
suggest that there are common underlying principles at work. When this
happens, it makes sense to try to construct an abstract model that cap-
tures these underlying principles in the simplest possible way, devoid of the
unimportant details of each particular manifestation. This is the process
of abstraction. Abstraction is the essence of scientific progress, because it
focuses attention on the important principles, unencumbered by irrelevant
details.

Perhaps the most striking example of this phenomenon we will see is the
formalization of the concept of effective computability. This quest started
around the beginning of the twentieth century with the development of the
formalist school of mathematics, championed by the philosopher Bertrand
Russell and the mathematician David Hilbert. They wanted to reduce all
of mathematics to the formal manipulation of symbols.

Of course, the formal manipulation of symbols is a form of computation,
although there were no computers around at the time. However, there cer-
tainly existed an awareness of computation and algorithms. Mathemati-
cians, logicians, and philosophers knew a constructive method when they
saw it. There followed several attempts to come to grips with the gen-
eral notion of effective computability. Several definitions emerged (Turing
machines, Post systems, etc.), each with its own peculiarities and differing
radically in appearance. However, it turned out that as different as all these
formalisms appeared to be, they could all simulate one another, thus they
were all computationally equivalent.

The formalist program was eventually shattered by Kurt Gédel’s incom-
pleteness theorem, which states that no matter how strong a deductive
systém for number theory you take, it will always be possible to construct
simple statements that are true but unprovable. This theorem is widely
regarded as one of the crowning intellectual achievements of twentieth cen-
tury mathematics. It is essentially a statement about computability, and
we will be in a position to give a full account of it by the end of the course.

The process of abstraction is inherently mathematical. It involves build-
ing models that capture observed behavior in the simplest possible way.
Although we will consider plenty of concrete examples and applications of
these models, we will work primarily in terms of their mathematical prop-
erties. We will always be as explicit as possible about these properties.

6

Lecture 1

We will usually start with definitions, then subsequently reason purely in
terms of those definitions. For some, this will undoubtedly be a new way of
thinking, but it is a skill that is worth cultivating.

Keep in mind that a large intellectual effort often goes into coming up with
just the right definition or model that captures the essence of the principle
at hand with the least amount of extraneous baggage. After the fact, the
reader often sees only the finished product and is not exposed to all the
misguided false attempts and pitfalls that were encountered along the way.
Remember that it took many years of intellectual struggle to arrive at the

theory as it exists today. This is not to say that the book is closed—far
from it!

Lecture 2

Strings and Sets

Decision Problems Versus Functions

A decision problem is a function with a one-bit output: “yes” or “no.” To
specify a decision problem, one must specify

¢ the set A of possible inputs, and

¢ the subset B C A of “yes” instances.

For example, to decide if a given graph is connected, the set of possible
inputs is the set of all (encodings of) graphs, and the “yes” instances are
the connected graphs. To decide if a given number is a prime, the set of
possible inputs is the set of all (binary encodings of) integers, and the “yes”
instances are the primes.

In this course we will mostly consider decision problems as opposed to
functions with more general outputs. We do this for mathematical simplicity
and because the behavior we want to study is already present at this level.

|
Strings

Now to our first abstraction: we will always take the set of possible inputs to
a decision problem to be the set of finite-length strings over some fixed finite

8 Lecture 2

alphabet (formal definitions below). We do this for uniformity and simpli

ity. Other types of data—graphs, the natural numbers N = 10:5: 3w i)
trees, even programs—can be encoded naturally as strings. By making
this abstraction, we have to deal with only one data type and a few basii
operations.

Definition 2.1 ' e Ap alphabet is any finite set. For example, we might use the alpha

bet {0,1,2,...,9} if we are talking about decimal numbers; the gef
of all ASCII characters if talking about text; {0,1} if talking about
bit strings. The only restriction is that the alphabet be finite. When
speaking about an arbitrary finite alphabet abstractly, we usually de.
note it by the Greek letter ©. We call elements of T letters or symbols

and denote them by a,b,c,... . We usually do not care at all about
the nature of the elements of ¥, only that there are finitely many of
them. :

® A stringover ¥ is any finite-length sequence of elements of ¥. Example:
if ¥ = {a,b}, then aabab is a string over ¥ of length five. We use
Z,Y,2,... to refer to strings.

® The length of a string z is the number of symbols in z. The length of
z is denoted |z|. For example, |aabab| = 5.

® There is a unique string of length 0 over ¥ called the null string or
empty string and denoted by € (Greek epsilon, not to be confused with
the symbol for set containment €). Thus le] = 0.

® We write a™ for a string of a’s of length n. For example, ¢° = aaqaa,
ol =a, and a° = . Formally, o™ is defined inductively:

def
o’ = ¢,

def
a™t! = g,

® The set of all strings over alphabet ¥ is denoted ©*. For example,

{a,b}* = {e,a,b, aa, ab, ba, bb, aaa, aab, . . .},
{a}* = {¢,a, 00,000, aqaa, .. al
={a" | n > 0}. O

By convention, we take
% def
2" = {e},

where @ denotes the empty set. This may seem a bit strange, but there is
good mathematical justification for it, which will become apparent shortly.

e S A

Strings and Sets 9

Dafinition 2.2

If & is nonempty, then £* is an infinite set of finite-length strings. Be careful
not to confuse strings and sets. We won'’t see any infinite strings until much
later in the course. Here are some differences between strings and sets:

® {a,b} = {b,a}, but ad # ba;
e {a,a,b} = {a,b}, but aab # ab.

Note also that @, {¢}, and e are three different things. The first is a set
with no elements; the second is a set with one element, namely ¢; and the
last is a string, not a set.

Operations on Strings

The operation of concatenation takes two strings ¢ and y and makes a new
string zy by putting them together end to end. The string zy is called the
concatenation of x and y. Note that zy and yz are different in general. Here
are some useful properties of concatenation.

® concatenation is associative: (zy)z = z(yz);

® the null string € is an identity for concatenation: ez = ze = ;
* lzy| = jo| + yl.
A special case of the last equation is ¢™a™ = a™* " for all m,n > 0.

A monoid is any algebraic structure consisting of a set with an associative
binary operation and an identity for that operation. By our definitions
above, the set £* with string concatenation as the binary operation and e
as the identity is a monoid. We will see some other examples later in the
course.

¢ We write 2™ for the string obtained by concatenating » copies of z.
For example, (aab)® = aabaabaabaabaad, (aab)! = aab, and (aad)® = e.
- Formally, z™ is defined inductively:

def
2 E e,

def
"t = g,

* If ¢ € ¥ and z € £¥, we ‘write #a(z) for the number of o’s in z. For
example, #0(001101001000) = 8 and #1(00000) = 0.

® A prefiz of a string ig an initial substring of z; that is, a string y for
which there exists a string z such that z = yz. For example, abaab is
a prefix of abaababa. The null string is a prefix of every string, and

10

Lecture 2

every string is a prefix of itself. A prefix y of = is a proper prefix of 2
if y £ ¢ and y # =. 0

‘Operations on Sets

We usually denote sets of strings (subsets of *) by 4,B,C,... . The
cardinelity (number of elements) of set 4 is denoted |A|. The empty set @
is the unique set of cardinality 0.

Let’s define some useful operations on sets. Some of these you have probably
seen before, some probably not. :

iff = if and only if.

¢ Sel union:

AUBd:-—?‘-f{£C[:BEAOI$EB}.

In other words, z is in the union of A4 and B iff! either z is in 4 or z
is in B. For example, {a,ab} U {ab, aab} = {a,ab, aab}.

Set intersection:
AﬂBdéf{miweAa.ndmeB}.

In other words, z is in the intersection of A and B iff 2 is in both A
and B. For example, {a,ab} N {ab,aab} = {ab}.

Complement in ¥
~AE (zex* |z g A)
For example,
~ {strings in T* of even length} = {strings in * of odd length}.

Unlike U and N, the definition of ~ depends on T*. The set ~ A4 is
sometimes denoted £* — A to emphasize this dependence.

Set concatenation:
ABY {sylz e Aandy e B).

In other words, 2 is in AB iff z can be written as a concatenation
of two strings z and y, where ¢ € A and y € B. For example,
{a,ab}{b,ba} = {ab,aba,abb,abba}. When forming a set concatena-
tion, you include all strings that can be obtained in this way. Note that
AB and BA are different sets in general. For example, {b, ba} {a,ab} =
{ba, bab, baa, baab}.

Strings and Sets i1

¢ The powers A™ of a set A are defined inductively as follows:
A= (e},
A a4,

In other words, A™ is formed by concatenating n copies of A together.
Taking A% = {¢} makes the property A™+™ = A™A™ hold, even when
one of m or n is 0. For example,

{ab, aab)’ = {¢},

{ab, aab} = {ab,aab},

{ab, aab}? = {abab, abaab, aabab, aabaab},

{ab,aab}® = {ababab, ababaab, abaabab, aababab,
abaabaab, aababaab, aabaabab, aabacbaab}.

% Also,
§ {a,b}" = {z.€ {a,b}" | |z| = n}
%; = {strings over {a,b} of length n}.
% e The asterate A* of a set A is the union of all finite powers of A:
A* d__.__'&:f U AP
n>0

= A"uAluAludiU....
Another way to say this is
A¥ = {e102 - zo [n>0and ;€ 4,1 <i < n}.
Note that n can be 0; thus the null string € is in A* for any A.

We previously defined &* to be the set of all finite-length strings over
the alphabet . This is exactly the asterate of the set ¥, so our notation
is consistent.

¢ We define A" to be the union of all nonzero powers of A:
AT E 44 = | 4n
n>l

Here are some useful properties of these set operations:

® Set union, set intersectioﬁ, and set concatena;;ion are associative:
(AUB)UC =AU (BUCQ),
(ANBINC = AN (BNC),

(AB)C = A(BC).

12

Lecture 2

Set union and set intersection are commutative:

AUB = BUA,
ANB=BnA.

As noted above, set concatenation is not.
The null set @ is an identity for U:
AUg=gUA=A.

The set {¢} is an identity for set concatenation:
{e}A= A{e} = A.

The null set @ is an ennihilator for set concatenation:

A =0A =2,

Set union and intersection distribute over each other:

AU{BNC)=(AUB)N(AUCQC),
AN(BUC)=(ANB)U(4ANC).

Set concatenation distributes over union:

A(BUC) = ABU AC,
(AU B)C = AC U BC.

In fact, concatenation distributes over the union of any family of sets.
If {B;|ie I} is any family of sets indexed by another set I, finite or
infinite, then

Al B) =48,

€1 1€l
(UBya= B4
iel iel

Here | J;c; B; denotes the union of all the sets B; for ¢ € I. An element
Z is in this union iff it is in one of the B;.

Set concatenation does not distribute over intersection. For example,
take A = {a,ad}, B = {b}, C = {c}, and see what you get when you
compute A(BNC) and ABN AC.

¢ The De Morgan laws hold:

~(AUB)=~AN~B,
~(ANB)=~AU~B.

Strings and Sets 13

® The asterate operation * satisfies the following properties:

A*A* — A*,

‘ A** — A*,
A* = {e} U AA* = {e} U A% 4,

o* = {6}

S

