
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFR08008 INFORMATICS 2A: PROCESSING FORMAL AND
NATURAL LANGUAGES

Saturday 10 th December 2016

09:30 to 11:30

INSTRUCTIONS TO CANDIDATES

1. Answer all five questions in Part A, and two out of three questions in
Part B. Each question in Part A is worth 10% of the total exam mark;
each question in Part B is worth 25%.

2. Use a single script book for all questions.

3. Calculators may be used in this exam.

Convener: I. Simpson
External Examiner: I. Gent

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

Part A

1. (a) Draw the state diagram for a simple NFAN over the alphabet {a, . . . , z} that
accepts precisely the strings ending in lalla. The states should be labelled as
0, 1, 2, . . . in the obvious way. You may use obvious abbreviations wherever
a large number of very similar transitions appears. [2 marks]

(b) Use the subset construction to convert N to an equivalent DFA M . You need
only include the reachable states in your diagram. Label each state of M
to show which set of states from N it corresponds to. Again, abbreviations
are acceptable. [7 marks]

(c) How may we use M to identify all occurrences of the substring lalla within
a longer string over {a, . . . , z}? [1 mark]

2. (a) State the Pumping Lemma for regular languages. [3 marks]

(b) Consider the language L = {ambn | m 6= n} over the alphabet {a, b}. What
difficulty do we encounter if we try to use the Pumping Lemma directly to
show that L is not regular? It will suffice here to illustrate the failure of one
plausible attempt at doing this, pinpointing where a problem arises. [4 marks]

(c) Give an indirect proof that the above language L is not regular, by using
standard closure properties of regular languages and appealing to a standard
example of a non-regular language. [3 marks]

3. Consider the following emission and transition probabilities for parts of speech.
(For simplicity, we use MOD, a generic part of speech standing in for adjectives
and adverbs). Assume every sequence must be preceded by START and followed
by STOP.

All were the UNK
DT – – 1.0 –

MOD 0.2 – – 0.8
NN – – – 0.5
VB – 0.8 – 0.2

from ↓ to → DT MOD NN VB STOP
START 0.5 0.3 0.2 – –

DT – 0.3 0.7 – –
MOD – 0.5 0.3 0.2 –
NN – – – 0.5 0.5
VB .03 0.3 0.3 – 0.1

The UNK token in the emission table should be substituted for any input word
that does not otherwise appear in the table. Now suppose that we receive this
line from Lewis Carroll’s Jabberwocky as input.

All mimsy were the borogoves

Using the tables above, use the Viterbi algorithm to determine the most probable
tag sequence an HMM tagger would assign to this sentence. Show your work. [10 marks]

Page 1 of 7

4. Consider the following grammar.

S → NP VP (1.0)
VP → VB NP PP (0.4) | VB NP (0.6)
PP → Prep NP (1.0)
NP → NP PP (0.3) | NN (0.7)
NN → scientists (0.3) | space (0.5) | whales (0.2)
VB → count (1.0)
Prep → from (1.0)

Now suppose we have the following input sentence, a February 2014 headline
from the BBC News:

Scientists count whales from space

Draw all possible parse trees for this sentence and compute their probabilities.
Which parse would the parser choose? [10 marks]

5. A polarity item is a word or phrase that can only appear in either a positive or
negative context. For example, somewhat can appear only in positive contexts,
while at all can appear only in negative contexts:

you like the film somewhat
you do not like the film at all

* you do not like the film somewhat
* you like the film at all

(Recall that an example sentence preceded by * is one that is considered ungram-
matical). Now suppose that we have the following grammar in which nontermi-
nals are capitalized, terminals are lowercase, and the start symbol is S:

S → NP VP
VP → VB ADVP | NEG VB ADVP
NP → you | the film

NEG → do not
VB → like

ADVP → somewhat | at all

This grammar accepts both the grammatical and ungrammatical sentences above.
You should redesign it so that it accepts the two grammatical sentences, and
rejects the ungrammatical ones.

(a) Design a new grammar without using agreement features. [4 marks]

(b) Design a new grammar using agreement features. [4 marks]

(c) Explain how the grammars with and without agreement features differ, and
whether the difference is functionally important. (Hint: do the grammars
generate the same string languages? What about their analyses?) [2 marks]

Page 2 of 7

Part B

6. In typical Unix-style command shells, a Java program may be executed using the
command java in conjunction with the name of the program to be run. The
latter may be either the name of a class file, or (if preceded by -jar) the name of
a Java archive file containing the program. In addition, the command may specify
a number of run-time options (these appear before the name of the program), as
well as a list of arguments to be passed to the program itself (these appear after
the name of the program).

A simplified version of the syntax of such commands is given by the following
LL(1) grammar. The start symbol is command, and the six terminals are

java - -jar : = str

For the purpose of this question, we shall treat -jar as a single lexical item,
although in other contexts, - will be treated as a token by itself. The terminal
str stands for a single lexical class of strings which we shall use for many different
purposes: as file names, option names, option values and argument values. The
productions of the grammar are as follows:

command → java opts file args

opts → ε | opt opts

opt → - str qualifier

qualifier → ε | : str | = str

file → str | -jar str

args → ε | str args

(a) Write down the set E of potentially empty non-terminals for this grammar.
Using this, calculate the First sets for all of the non-terminals in the gram-
mar. [4 marks]

(b) Calculate the Follow sets for all the non-terminals in the grammar. (This
is more demanding than part (a) and hence carries more credit.) [6 marks]

(c) Using these First and Follow sets, or else by simple inspection, construct
the LL(1) parse table for the grammar. You may use either a double page
or a single page in landscape orientation for this. [9 marks]

(d) Suppose now that we attempt to parse the sequence of tokens

java str -jar str

via the standard LL(1) parsing algorithm, using your parse table from
part (c).

QUESTION CONTINUES ON NEXT PAGE

Page 3 of 7

QUESTION CONTINUED FROM PREVIOUS PAGE

Construct a table showing how the computation proceeds, displaying at
each step the operation performed, the input remaining, and the state of
the stack. Continue with the computation until either a successful parse
is achieved, or some error is encountered. If the latter occurs, indicate
precisely where and how the error is detected by the parser. [6 marks]

Page 4 of 7

7. This question explores the notion of interleaving of regular languages, a concept
not formally defined within the course.

By an interleaving of two strings s and t, we mean any string u whose symbol
occurrences may each be tagged with either 0 or 1 in such a way that the symbols
tagged with 0 (in order) spell out precisely the string s, and those tagged with
1 spell out t. For example, each of the following is a possible interleaving of the
strings moon and note:

moonnote notemoon monotone nomtoeon

By the interleaving of two languages L0 and L1, we mean the language consisting
of all possible interleavings of a string from L0 and a string from L1:

L0 ‖ L1 = {u | ∃s ∈ L0, t ∈ L1. u is an interleaving of s and t }.

(a) Consider the following NFAs N0, N1 over the alphabet {a, b, c}:

b

c c

a

b

N :
0

N :
1

Draw the state diagram for an NFA N such that L(N) = L(N0) ‖ L(N1),
where ‖ is the interleaving operation defined above. (Hint: Your NFA should
have a state for every pair of states (q0, q1) where qi is a state of Ni for i =
0, 1. However, it should clearly not be the same as the NFA corresponding
to the intersection L(N0) ∩ L(N1).) [5 marks]

(b) Now given two arbitrary NFAs N0 = (Q0,∆0, S0, F0), N1 = (Q1,∆1, S1, F1)
over the same alphabet Σ, give a general mathematical definition of an NFA
N = (Q,∆, S, F) such that L(N) = L(N1) ‖ L(N2). Your definition should
specify the set of states Q, the transition relation ∆ ⊆ Q × Σ × Q, the set
of start states S ⊆ Q, and the set of accepting states F ⊆ Q. [5 marks]

(c) Given an alphabet Σ, let L(Σ) denote the set of strings s such that every
symbol a ∈ Σ occurs exactly once within s. Show how L(Σ) may be obtained
from a family of extremely simple languages via interleaving. Hence show
how one may construct an NFA NΣ for L(Σ). How many states does this
NFA have? [5 marks]

(d) State what it means for an NFA to be minimal (noting that the usual
definition for DFAs makes sense also for NFAs). Is your NFA NΣ from
part (c) minimal? Briefly justify your answer. [5 marks]

QUESTION CONTINUES ON NEXT PAGE

Page 5 of 7

QUESTION CONTINUED FROM PREVIOUS PAGE

(e) Given a string s, let Ms denote the obvious minimal DFA that accepts the
string s and nothing else. By applying the construction from part (b) to
two copies of Ms, we obtain a machine M2

s that accepts the language L2
s

consisting of all interleavings of s with itself. Show that for any k ≥ 0, there
is a string s such that M2

s has more than k times the number of states in
the minimal DFA for L2

s. [5 marks]

Page 6 of 7

8. In English, the respectively construction relates two ordered sets of n words each,
such that the ith word of the first set is related to the ith word of the second, for
all i from 1 to n. For example, suppose we see the sentence:

a wall, table, and floor are yellow, green, and blue, respectively,

This means that a wall is yellow, a table is green, and a floor is blue.

Before we delve into the construction, let’s first remind ourselves how semantics
are assigned to easier sentences. Suppose that we have the following highly
simplified grammar:

S → a NP is JJ
NN → wall | table | floor
JJ → blue | green | yellow

(a) The above grammar generates simple sentences without the respectively con-
struction, such as a table is green. We would like this sentence to have the
semantics ∃x.Table(x)∧Green(x). Add lambda terms to the grammar so
that it computes the correct semantics for each sentence that it generates.
(Note: for this exercise, it is only important that your lambda terms com-
pute to the correct semantics. It doesn’t matter whether they are the same
as those a semanticist would write.) [5 marks]

(b) Now we will develop a simple version of the respectively construction. Modify
the grammar (including the lambda terms) so that it will accept sentences
of the form a NN and NN are JJ and JJ , respectively and assign the correct
semantics to them. For example, if your parser encounters the sentence a
table and wall are blue and yellow , respectively, it should assign the correct
semantics: ∃x.∃y.Table(x) ∧Blue(x) ∧Wall(y) ∧Yellow(y). [5 marks]

(c) Let’s move to a more general form of the respectively construction. For this
part, modify your syntactic grammar (don’t worry about semantics yet) so
that it will accept sentences of the form a NN , ... , NN and NN are JJ ,
... , JJ and JJ , respectively, for equal numbers of NN and JJ categories.
If it’s helpful, you can assume that the comma token (,) has category CC
(coordinating conjunction). It is ok if your grammar accepts other sentences,
for instance replacing comma (,) with and. [4 marks]

(d) As we’ve seen in lecture, all regular languages are expressible as context-
free grammars, and indeed our original grammar and the modified grammar
grammar of (8b) produce regular languages. What about the langage of
(8c)? Is it regular? It suffices to give an intuitive justification; a formal
proof is not needed. [3 marks]

(e) Add lambda terms to your grammar, or if you are unable to, explain infor-
mally what problem arises when you try to do so. [5 marks]

(f) Does the respectively construction remind you of any linguistic phenomena
we discussed in class? How is it similar? How is it different? [3 marks]

Page 7 of 7

