Module Title: Informatics 2A
Exam Diet (Dec/April/Aug): December 2013 2013-14
Brief notes on answers:

PART A

1.

(a) Bookwork. An LP pipeline is an ordered sequence of processing stages that are

applied to a language text or utterance in order to perform some task of interest.
(i) For Java, typical stages (in order) would include lexing, parsing, typechecking,
code generation, linking and execution. (ii) For spoken English, typical stages
would include phonological analysis, word segmentation, POS tagging, parsing,
agreement checking, meaning extraction.

[2 marks for the general concept of a pipeline; 2 marks each for (i) and (ii). Any
reasonable stages in a reasonable order will be accepted.]

Again bookwork. Any two of the following (or any other reasonable points) will
be accepted.

e Natural languages are riddled with ambiguity at all levels; in formal lan-

guages this is generally avoidable by design. This means that in NL it is
more a case of determining the most probable interpretation than the single
‘correct’ one—hence the common use of probabilistic methods in NLP.

In formal languages, the pipeline often works in a pure, linear way: each
processing stage depends only on the output from the previous stage. In
NL, there is less of a clean separation between stages, since information
from later stages may often used to resolve ambiguities arising from earlier
stages.

Natural languages are evolving all the time, and no exhaustive description
of a language is possible. NL systems should therefore be designed to be
work (as far as possible) in the presence of new words and other previously
‘unknown’ elements.

[For each point: 1 mark for the difference, 1 mark for the implications for LP.]

2. [A similar question to this was scrutinised last year but wasn’t used because of the

ITO burglary]

(a) One possible NFA:

a,b,c

[4 marks: in proportion to correctness]
[The students have seen an example very similar to this in lectures.]

Common error in solution:

e Including a garbage state. NFAs never need a dedicated garbage state.

(Exercise: understand why not!)

(b) The DFA is below.

[5 marks: in proportion to correctness]

(c) 2™.

[1 mark]
[This was mentioned in lectures as an example for which determinization is
necessarily exponential.]

3. (a) A typical equivalent CNF grammar is:

Com — G TwoNP
G — give
TwoNP — NP NP
NP — DT Nom
Nom — dog | bone | AN

plus the existing productions for DT, N, A.

[Roughly, 2 marks for being in CNF, 2 marks for being equivalent to the original
grammar. |

(b) For the above CNF grammar, the CYK parse chart is:

give | the | dog a bone
give | G Com
the DT | NP TwoNP
dog N,Nom
a DT | NP
bone N,Nom

(Different answers to part (a) will yield slightly different charts.) For each entry
corresponding to a non-singleton phrase, there should also be pointers leftward
and downward to its two immediate children. The down pointer from each NP
should point to Nom.

[Roughly 0.5 marks per correct entry; 1.5 marks for pointers and general format.|

4. (a) The parse tree is given by

il

(BigS (S there is (NP a (Nom (A serious)(N problem)))) if
(S it (WeatherV snows)))

The raw lambda-expression associated with the root is
Snows = 3 x.(Ay. (\z. Serious(z))(y) A (Az. Problem(z))(y))(x)

with various sub-expressions of this being associated with other nodes in the
obvious way.

[1 mark for the right parse tree. 1 mark for evidence of understanding, and about
0.5 marks per correctly annotated node.|

(b) The above expression [-reduces in three steps to
Snows = 3 x.Serious(x) A Problem(x)

Various reduction orders are possible.

[2 marks for the correct normal form, 2 marks for displaying the reduction se-
quence.|

5. (a) Underlining the sequence to be expanded on the next line:

S = IT
= !AaT
= alaT
= alaBb
= alBab
= ablab

[7 marks: 1 per correct step, including starting with S]

(b) The language is:
o la| e fa,b) o > 1}

[2 marks: award 1 if idea right but some error in presentation]

(c) Context sensitive.
[1 mark]

il

i). Regular languages. E.g., {a" | n > 0}, or even).

)

(ii). Context-free languages. E.g., {a™b" | n > 0}.
i). Context-sensitive languages. E.g., {a"b"c¢" | n > 0}.
)

. Recursively enumerable languages. E.g., the set of encodings of Turing ma-
chines that halt when run on an empty tape.

[8 marks: 1 mark per point]
Common errors in solutions:
e Not including an example for (i). Because there are no machine types higher

on the list than (i), to answer the question you just need to give an example
of a regular language.

e Saying “grammars” instead of “languages”. The question asks for classes of
languages.

e Saying “unrestricted languages” in (iv). The class of languages is recursively
enumerable languages (which are defined by unrestricted grammars).

(b) The PDA execution:

action state unread input stack

ql aaabba €L

ql LLLLLN ql ql aabba al
gl 22%% 1 g1 abba aa L
gl 22%% g1 g1 bba aaa L
ql hae q2 q2 ba aa L
22251 ql ba al
ql hae q2 q2 a L
q2 EESLEN ql ql a b_L
ql wbhie ql ql € €
ql Sl ql ql € €

[8 marks: in proportion to completeness/correctness|
Common errors in solutions:
e Consuming the current input symbol when an e-transition is applied (leading
to, e.g., an unread input of a in row 6 of the table).
e Considering | as the empty stack. It is not, it is a stack with one item. The
final transition is needed to empty the stack.
(¢) The language L:
{z € {a,0}" | #a(2) = 2 X #(2)}
where #.(x) denotes number of occurrences of character ¢ in string .
[2 marks: award 1 if idea right but some error in presentation]
(d) We use the pumping lemma to show the language is not regular.
[1 mark]
We show — P (the negation of the pumping property).

v

Suppose k > 0.
Consider x = ¢, y = b* and z = a?*. Then zyz = b*a?* € L and clearly |y| > k.
Suppose y = wvw where |v| > 1.

Then wv’w = vw = b™ for some m < k. Whence zyv’wz = b™a?* ¢ L since

#,(0ma?*) = 2k > 2m = 2 x #,(b"a?*).
Thus the pumping property fails for ¢ = 0.
[6 marks: in proportion to completeness of argument]

[Direct proofs not using the pumping lemma are also acceptable here. In any
case, split marks as: 1 for setting scene for proof, plus 6 for proof details.]

[Correctness of answer will be assessed on basis of proving the language the
student gives as answer to part (c¢) cannot be recognised by a DFA. Thus, full
marks can be obtained for part (d) even if part (c¢) is incorrect. |

Common errors in solutions:

e Choosing fixed strings for x,y, z; e.g., x = aaa, y = bb, z = a. For every k > 0,
the proof needs to work with zyz where y satisfies |y| > k.

e Choosing specific values for u,v,w; e.g., v = b*', v = b, w = €. For the
argument to be correct, it has to work for every uvw for which y = wvw and
ly| > 0.

e Saying y = uvw in one line and then y = wv'w or y = uw in another. If [v| > 1
then y = vvw and y = vw cannot both be true.

7. [A similar question to this was set last year but was not used because of the ITO
burglary.|

(a) The parse trees are given by:
e (S place (NP (NP (Noun chips))(PP (Prep on)(NP (Noun tray))))
(PP (Prep in)(NP (Noun oven))))

e (S place (NP (Noun chips)) (PP (Prep on)(NP (NP (Noun tray))
(PP (Prep in)(NP (Noun oven))))))

[1 mark each.]

(b) The execution of Earley parsing is as follows. (There are also other spurious
steps they might choose to show.)

8.

S — e place NP PP

S — e remove NP from NP
S — place ¢ NP PP
NP — e Noun

NP — e NP PP

NP — Noun e

NP — NP e PP

[0,0]
[0,0] (spurious)
[0,1]
[1,1]
[1,1]
[1,2]
[1,2]
S — place NP e PP [0,2]
[2,2]
2,3]
[3,3]
[3,3]
[3.4]
[2,4]
[0,4]

(spurious)
(spurious)

PP — e Prep NP
PP — Prep e NP
NP — e Noun
NP — e NP PP

NP — Noun e

PP — Prep NP e
S — place NP PP e

(spurious)

Qunuym-ounnyaoaQunyunn oo

C (successful parse)

[9 marks: 3 for understanding of basic method; 6 for the details.]

(c) Probabilistic CFGs wouldn’t help for this pair of trees. The same rules fea-
ture the same number of times but in a different order, so whatever the rule
probabilities were, the two trees would have the same probability.

[2 marks; either they see it or they don’t.]

(d) Slightly more challenging. An example of an equivalent LL(1) grammar is:
S — place Noun PP | remove NP from NP
NP — Noun PPopt
PPopt — € | PP
PP — Prep NP
Many other solutions are possible.
[2 marks for an LL(1) grammar not equivalent to the given one. 3 marks for an
equivalent grammar that isn’t quite LL(1). 5 marks for a fully correct solution.]

(e) This will depend on their solution to the previous part. For the above LIL(1)
grammar, the parse table is

place remove from Noun Prep $
S | place Noun PP remove NP from PP
NP Noun PPopt
PPopt € PP €
PP Prep NP

[Up to 7 marks. Full credit is available for a solution that’s correct relative the
grammar given in (d), if it’s LL(1). 3 marks for evidence of understanding; 4
marks for the details.]

(a) The required transducer is:

vi

#:Np

./ #:Vs

f J
@t J
#:{Ns,Vp,Adj,Adv}

(b) The Viterbi matrix is as follows. Pointers are to cells in the previous column.

hook hold fast
N | 0.6x0.5 = 0.3 | 0.3x0.4x0.3 = 0.036 | 0.036x0.4x0.2 = 0.00288
(points to N) (points to N)
V| 0.2x0.3 = 0.06 | 0.3x0.3x0.5 = 0.045 | 0.036x0.3x0.2 = 0.00216
(points to N) (points to N)
Adj | 0 0 0.045x0.2x1.0 = 0.009
(points to V)
Adv | 0 0 0.045x0.3x1.0 = 0.0135
(points to V)

So the optimal tagging is N V Adv.

[2 marks for the correct result. For the Viterbi matrix, roughly 1 mark per
correct non-zero entry, being somewhat lenient towards minor clerical errors.]

(c) To tag a sequence such as ‘hook holds fast’: first run the transducer on each word
to extract the stem and a set of possible fine-grained tags. Then run Viterbi on
the sequence of stems to obtain a coarse-grained tagging. Finally, for each word,
select the (unique possible) fine tag that is compatible with the coarse tagging.
E.g. for ‘holds’, the stem is ‘hold’, the possible fine tags are Np and Vs, the
coarse tag is V, so the chosen fine tag is Vs.

[2 marks for the method; 1 mark for sensible reference to the example.]

vil

