
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFORMATICS 2A: PROCESSING FORMAL AND NATURAL
LANGUAGES

December 9, 2008

14:30 to 16:30

Convener: M O’Boyle
External Examiner: R Irving

INSTRUCTIONS TO CANDIDATES

1. Candidates in the third or later year of study for the degrees of MA(General),
BA(Relig Stud), BD, BCom, BSc(Social Science), BSc (Science) and BEng
should put a tick (

√
) in the box on the front cover of the script book.

2. Answer Parts A and B. The multiple choice questions in Part A are worth
50% in total and are each worth the same amount. Mark one answer only for
each question - multiple answers will score 0. Marks will not be deducted for
incorrect multiple choice exam answers. Part B contains THREE questions.
Answer any TWO. Each is worth 25%.

3. Use the special mark sheet for Part A. Use a separate script book for each of
the TWO questions from Part B that you answer.

Write as legibly as possible.
CALCULATORS ARE NOT PERMITTED.

Part A
ANSWER ALL QUESTIONS IN PART A. Use the special mark sheet.

1. Someone asserts that the language L = {x ∈ {a, b}∗ | x = xR} is recognisable by a
finite state machine with k states. You are in the process of demonstrating this is
false using the pumping lemma. What would be a good choice of string to consider
in using the pumping lemma to prove the assertion is false?

(a) aaabbbbaaa

(b) aaaaaaabbbbbbb

(c) akbk

(d) akbak

(e) None of the above.

2. Which of the following is the dependency set for a string x = a1 . . . a2n of length 2n
in the language L = {x ∈ {a, b}∗ | x = xR}?

(a) {(i, 2n− i + 1) | 1 ≤ i ≤ n}
(b) {(i, n− i + 1) | 1 ≤ i ≤ n}
(c) {(i, n + i) | 1 ≤ i ≤ n}
(d) ∅
(e) None of the above.

3. Given that #a(x) stands for the number of a symbols in string x, what is the language
recognised by the following FSA?

// ?>=<89:;1

a

��

b
++ ?>=<89:;2

b

kk

a

��?>=<89:;3

a

KK

b
++ ?>=<89:;765401234

b

kk

a

KK

(a) {x ∈ {a, b}∗ | #a(x) and #b(x) are both even}
(b) {x ∈ {a, b}∗ | #a(x) and #b(x) are both odd}
(c) {x ∈ {a, b}∗ | #b(x) is even}
(d) {x ∈ {a, b}∗ | #b(x) is odd}
(e) none of the above

Page 1 of 12

4. Which of the following strings is a member of the language described by the regular
expression (b(ab∗a)∗b)∗ ?

(a) bbbb

(b) bbaaabb

(c) bbaaabbbabb

(d) bbabbbab

(e) None of the above.

5. Someone has asserted that the following two regular expressions describe the same
language: R1 = (b(ab∗a)∗b)∗ and R2 = (b+((ba)∗a))∗. Which of the following strings
is contained in one of the languages but not in the other?

(a) baab

(b) baaaab

(c) bbbaa

(d) baabbaab

(e) None of the above.

6. Which of the following context-free grammar productions (a) is unambiguous and (b)
describes the language which is a subset of {a}∗ in which all strings contain an even
number of a symbols? In all cases, the start symbol is S and the alphabet is {a}.

(a) S → aA | Aa | ε A → aS

(b) S → aaS | ε
(c) S → SS | aa | ε
(d) S → ε | aA | Ba | ε A → aaA | a B → Baa | a
(e) None of the above.

7. As before, #a(x) stands for the number of a symbols in string x. Which of the
following descriptions best fits the language L = {x ∈ {a, b, c}∗ | #a(x) = #b(x) +
#c(x)}?

(a) L is a regular language

(b) L is a context-free language that is not regular

(c) L is a context-sensitive language that is not context-free

(d) L is not a context-sensitive language

(e) None of the above.

Page 2 of 12

8. Consider the following context-free language: L1 = {x ∈ {a, b, c}∗ | #a(x) =
2#b(x)}. Which of the following choices of language L2 is context-free and ensures
that L1 ∩ L2 is not a context-free language?

(a) L2 = {akb2kcm | k ≥ 0 and m ≥ 0}
(b) L2 = {(abc)2k | k ≥ 0}
(c) L2 = {akbmc2k | k ≥ 0 and m ≥ 0}
(d) L2 = {akb2kc2k | k ≥ 0}
(e) None of the above.

9. Consider the following context-free grammar:

G = ({S, A,B,C}, {a, b, c,a}, {S → A a, A → CAB | a | ε, B → bA | ε, C → cA | ε}, S)

Which of the following sets is First1(A)?

(a) {a}
(b) {a, b}
(c) {a, b, ε}
(d) {a, b, c, ε}
(e) None of the above

10. What is the language recognised by the following PDA P? The stack alphabet of P
is {A, B,⊥} where ⊥ is the initial stack symbol. The alphabet of P is {a, b,a} where
a is used to mark the end of the input. As before, #c(x) stands for the number of c
symbols in x.

// ?>=<89:;1

b,A;λ a,B;λ

 a,A;λ //

b,B;BB a,A;AA

11

b,⊥,B⊥ a,⊥;A⊥
mm ?>=<89:;765401232

(a) {x ∈ {a, b}∗ a| #a(x) and #b(x) are both even}
(b) {x ∈ {a, b}∗ a| #a(x) > #b(x)}
(c) {x ∈ {a, b}∗ a| #b(x) = 2#a(x)}
(d) {x ∈ {a, b}∗ a| #b(x) ≥ #a(x)}
(e) none of the above

Page 3 of 12

11. Which of the following statements is true of a tree?

(a) It is an order-independent representation of the set of equivalent context-free
(CF) derivations of a given string.

(b) It is an order-independent representation of the set of all CF derivations of a
given string.

(c) It is an order-independent representation of the set of equivalent CF or context-
sensitive (CS) derivations of a given string.

(d) It is an order-sensitive representation of the set of equivalent CS derivations of
a given string.

12. On theoretical grounds (ie, on the basis of language complexity), which of the fol-
lowing is not a possible human language?

(a) a language with palindromic strings of arbitrary length

(b) a language that allows strings of arbitrary words from the language in any
possible order (ie, a language in which order doesn’t matter)

(c) a language in which strings contain three exact copies of an arbitrary substring

(d) a language with only 50 words

(e) a language that lacks Parts of Speech

13. What is the size of the Well-Formed Substring Table (WFST) for a string of length
N, where the WFST can store pointers to immediate constituents as well as non-
terminal symbols and the spans they cover?

(a) N

(b) N2

(c) (N+1)2

(d) N3

14. The distribution of which of the following phenomena is not Zipfian?

(a) digits in a corpus of integers.

(b) words in a corpus of English text.

(c) words in a corpus of Korean text.

(d) prepositions in a corpus of English text.

(e) books sold by Amazon (UK).

Page 4 of 12

15. Which of the following lambda expressions does not reduce to

Love(John, Mary)

(a) λx.Love(John, x)(Mary)

(b) λx.Love(x, Mary)(John)

(c) λx.λy.Love(x,y)(John)(Mary)

(d) λu.λv.Love(v,u)(John)(Mary)

(e) λP.λw.λz.P(z,w)(John)(Mary)λu.λv.Love(v,u)

16. Which of the following is not a valid derivation of the grammar G1 with the following
productions?

G1 : S → AB | BA | ABA
A → AA | a
B → BB | b

(a) S ⇒ AB ⇒ AAB ⇒ AABB ⇒ aABB ⇒ aaBB ⇒ aabB ⇒ aabb

(b) S ⇒ AB ⇒ ABB ⇒ ABb ⇒ AABb ⇒ aABb ⇒ aaBb ⇒ aabb

(c) S ⇒ ABA ⇒ ABa ⇒ aBa ⇒ aba

(d) S ⇒ AB ⇒ AAB ⇒ AABA ⇒ AaBA ⇒ aaBA ⇒ aabA ⇒ aaba

(e) S ⇒ ABA ⇒ AABA ⇒ AaBA ⇒ aaBA ⇒ aabA ⇒ aaba

17. Which of the following terms is not a plausible formulation of a probabilistic POS
tagger?

(a) ti = arg maxj P (tj|ti−1, wi−1, wi)

(b) ti = arg maxj P (tj|ti−1, wi)

(c) ti = arg maxj P (tj|ti−2, ti−1, wi)

(d) ti = arg maxj P (tj|ti−1, wi, ti+1)

(e) ti = arg maxj P (tj|ti−1, wi−1)

Page 5 of 12

18. Which of the following rules contains indirect recursion?

(a) NP → Det Adj N
NP → Pron

(b) VP → V NP
NP → Det N that VP

(c) N’ → N N’
NP → Det N’

(d) S → AdvP S
AdvP → Adj Adv

(e) VP → V NP
NP → Det N PP

19. Which of the following properties holds for probabilistic context-free grammars?

(a) The sum of the probabilities of all rules in the grammar has to be one.

(b) The sum of the probabilities of all rules with the same right-hand side has to
be one.

(c) The probability of the parse of a sentence is the sum of the probabilities of all
the rules used to derive this parse.

(d) The probability of a sentence is the sum of the probabilities of all its parses.

(e) The probability of a sentence is the product of the probabilities of all its parses.

20. Which of the following first order predicate logic formulas is a correct representation
of every ambitious politician took a large bribe?

(a) ∀x.politician(x) ∧ ambitious(x) ∧ ∃y.bribe(y) ∧ large(y) ∧ took(x, y)

(b) ∀x.politician(x) ∧ ambitious(x) ⇒ ∃y.bribe(y) ⇒ large(y) ∧ took(x, y)

(c) ∀x.politician(x) ∧ ambitious(x) ⇒ ∃y.bribe(y) ∧ large(y) ∧ took(x, y)

(d) ∃x.politician(x) ∧ ambitious(x) ⇒ ∀y.bribe(y) ∧ large(y) ∧ took(x, y)

(e) ∃x.politician(x) ∧ ambitious(x) ∧ ∀y.bribe(y) ∧ large(y) ⇒ took(x, y)

Page 6 of 12

Part B
ANSWER TWO QUESTIONS FROM PART B

1. In this question you are asked to model a simple swipe gate, like the ones at the
entrance to the Informatics Forum, that fails from time to time.

(a) The swipe card system can do the following actions:

• s – read a swipe card

• f – fail after reading the card

• o – open the gate

• c – close the gate

The machine M1 that models the gate is:

// ?>=<89:;1
s

++ ?>=<89:;2
f

kk
o

++ ?>=<89:;765401233

c

��

The designer of the gate wants to check the gate is correct and thinks that having
a regular expression for the language L(M1) might be helpful. By writing down
an equation for each state and solving them using the technique used in Kleene’s
theorem, find a regular expression for the language recognised by M1.

[6%]

(b) Using reliability and maintenance data for the gate, the designer decides that if
the gate has two swipe failures then it should stop working to await maintenance.
The machine that allows any action when at most one fail has been observed is
M2:

// ?>=<89:;765401231

s,o,c

�� f
++ ?>=<89:;765401232

s,o,c

��

Combine M2 with the original model, M1, of the gate using the intersection
operation for Finite State Machines to construct a new version of the machine
that stops working once it has seen two swipe failures.

[5%]

(c) The designer continues to experiment with different models of the swipe gate
and tries a model where the gate can ignore swipes as well as explicitly failing.
The designer’s model M3 is the following:

Page 7 of 12

?>=<89:;4

s

��

s��

// ?>=<89:;1
s

++

s

??���������������� ?>=<89:;2
f

kk
o

++ ?>=<89:;765401233

c

[[

Unfortunately M3 is a nondeterministic finite automaton. Use the standard
construction to find the transition function for an equivalent deterministic finite
automaton.

[6%]

(d) The designer now wants to enlarge the market for the gate M1 by designing a
variant for more secure settings. The new version of the gate has an additional
action: e standing for “exit”. The designer’s idea is to include an exit gate
that will let people out provided the number of times the exit button is pressed
is smaller than or equal to the number of times the gate has opened. So the
language recognised in the new model is (here ‖ is the interleave operator):

L4 = {x ∈ L(M1) ‖ e∗ | for every prefix p of x : #o(p) ≥ #e(p)}

The designer claims to have a finite state machine M5 such that L(M5) = L4

and M5 has k states. Do you disagree with the designer’s claim? If you do
disagree, provide notes on how you would go about convincing the designer the
claim is false. If you agree with the designer provide a convincing argument
that the machine can be constructed.

[4%]

(e) The designer decides to build a monitor machine M6 that will just check if the
number of os is always at least as great as the number of es. Can you construct
the PDA M6 such that:

L(M6) = {x ∈ {s, f, o, c, e}∗ | for every prefix p of x : #o(p) ≥ #e(p)}

[4%]

Page 8 of 12

2. Transitive verbs in English such as love and contain have a standard clause struc-
ture corresponding to the two simple grammar rules

S → NP VP
VP → V NP

where the NP on the right-hand side of the sentence (S) rule is called the subject,
and that on the right-hand side of the verb phrase (VP) rule is called the direct
object.

Ditransitive verbs such as give and throw standardly expand VP according to the
grammar rules

VP → V NP PP (e.g. give a flower to John)
VP → V NP NP (e.g. give John a flower)

where John realises the indirect object of the ditransitive verb and a flower
realises its direct object.

In actual discourse, English allows topicalisation of a direct object, which moves
it to the front of the sentence, as in

i. Edinburgh, John loves. London, he dislikes.

ii. A rose, Mary gave John. A daffodil, she gave Fred.

iii. A rose, Mary gave to John. A daffodil, she gave to Fred.

(a) Add no more than two grammar rules to the above four, to recognise topicalised
sentences such as (i.) involving transitive verbs.

[5%]

(b) If the grammar also contains the rules

NP → NPR (e.g. a proper name)
NP → PRO (e.g. a pronoun)
NPR → John | Mary | Edinburgh | London
PRO → he | it
V → loves

give a complete well-formed substring table (WFST) first for the sentence John
loves Edinburgh, and then for the sentence Edinburgh John loves according to a
grammar consisting of the above rules and the rule or rules that you’ve written
for part (a).

[5%]

Page 9 of 12

(c) In the two rules for ditransitive verbs given at the start of the problem, the
second rule (repeated here)

VP → V NP NP (e.g. give John a flower)

cannot be used if the second NP is realised as a pronoun such as it, as in

*Mary gave John it.

How would you modify and/or extend the grammar in order to avoid accepting
or generating sentences such as Mary gave John it? (You can refer to the two
NP rules given above in part (b).)

[5%]

(d) Could sentences such as Mary gave John it be avoided (or given very low prob-
ability) in a different way in a non-lexicalised probabilistic context-free gram-
mar (PCFG)? If so, give the relevant rules, along with a low probability. If not,
explain. (You can refer to the two NP rules given above in part (b).)

[5%]

(e) Could such sentences be avoided (or given very low probability) in a different
way in a lexicalised PCFG that allowed lexicalisation on parts of speech like
NPR and PRO, as well as on specific words? If so, give the rules and their
probabilities. If not, explain. (Again, you can refer to the two NP rules given
above in part (b).)

[5%]

Page 10 of 12

3. Consider the grammar rules for simple sentences (some categories e.g. Determiner
have been omitted to reduce the number of rules):

S → NP VP

NP → N | N PP

VP → PR | PR PP

PR → V NP

PP → Prep NP

N → Fred | Hades | Orpheus | Eurydice

V → saw | abducted | lost | met

Prep → in | from | to | by

(a) Is this grammar ambiguous? Illustrate your answer by considering all parses of
the phrase: Orpheus saw Eurydice in Hades.

[3%]

(b) Is the language generated by this grammar infinite?
[1%]

(c) The grammar is in Chomsky Normal Form and so it is suitable for the CYK
parsing algorithm. In your script book, draw a five-by-five table and use the
CYK algorithm to parse the sentence Orpheus saw Eurydice in Hades.

[6%]

In an attempt to simplify the grammar a Computer Scientist produces a revised
version:

S → NP VP

NP → N PP

VP → PR

PR → V NP

PP → ε | Prep N PP

N → Fred | Hades | Orpheus | Eurydice

V → saw | abducted | lost | met

Prep → in | from | to | by

Page 11 of 12

(d) Is the revised grammar ambiguous? If it is, demonstrate this, if not provide
brief notes on why the grammar is unambiguous.

[2%]

(e) Augment the revised grammar with the new production S ′ → S ` and then
calculate First1(A) for each of the nonterminals S, NP, VP, PR, PP.

[3%]

(f) Using this augmented grammar, calculate Follow1(A) for the nonterminal PP.
[4%]

(g) Construct the LL(1) parse table for this grammar.
[5%]

(h) Is the grammar LL(1)?
[1%]

Page 12 of 12

Specimen Answers

Part A

1. d – because this string is in the language and is longer than k so we can apply the
Pumping Lemma with this as our choice of string.

2. a – because if we change the first character in a string in the language we can only
change the last character in the string to ensure the changed string is in the language
and so on for the second and second to last character . . .

3. b - if the number of b’s read by the machine is odd we are in either state 2 or state
4, if the number of a’s is odd we are either in state 3 or state 4 so if we are in state
4 (the final state) both are odd.

4. a – bb is in the language b(ab∗a)∗b so bbbb is in the language (b(ab∗a)∗b)∗

5. c - this is in the second RE but not in the first.

6. b – there is only one parse in which pairs of as are generated successively from S.

7. b - we know that we can construct a CFG that generates sentential forms where the
number of As and Bs is equal, we then require that A is rewritten as an a while B
can be rewritten either as a b or a c.

8. c – We can easily construct a CFG that generates L2 in this case and intersecting
this gives the language {akb2kc2k | 0 ≤ k}

9. d – A can derive the empty string hence its inclusion and each of the other letters
can start a string derived from A

10. b – the stack always comprises a list of As that count how many more as than bs we
have seen, or a list of Bs that count how many more bs than as we have seen. In
order to accept the end of input symbol we must have at least one A on the stack.

11. a

12. c

13. b

14. a

15. c

16. d

17. e

i

18. b

19. d

20. c

ii

Part B

1. (a) The equations derivable from the machine are:

R1 = sR2

R2 = fR1 + oR3

R3 = cR1 + ε

Allocate three marks for the equations.

Solving the equations:

R2 = fsR2 + oR3

R2 = (fs)∗oR3

R1 = s(fs)∗oR3

R3 = cs(fs)∗oR3 + ε

R3 = (cs(fs∗)o)∗

R1 = sfR1 + soR3

R1 = sfR1 + so(cs(fs∗)o)∗

R1 = (sf)∗so(cs(fs∗)o)∗

Allocate three marks for solving the equations.

(b) The intersection construction yeilds the machine:

// ONMLHIJK1, 1
s ,, ONMLHIJK1, 2

f

zz

o ,, ONMLHIJKGFED@ABC1, 3

c

~~

// ONMLHIJK2, 1
s ,, ONMLHIJK2, 2

o ,, ONMLHIJKGFED@ABC2, 3

c

~~

Allocate 2 marks for getting the stateset correct, including the final state. Al-
locate a further two marks for the non-f transitions and one mark for the f
transition.

(c) In this section we use the subset construction to construct the new machine.
The stateset of the new machine comprises subsets of the states of the non-
deterministic machine. The new transition function is:

State c f o s

1 2,4
2, 4 1 3 2,4
3 1

iii

Award two marks for using subsets of the stateset and a further 4 for the tran-
sition function.

(d) • I disagree with the designer. Award one mark

• Use the pumping lemma for regular languages to demonstrate the designer’s
claim is false:

– Consider the string x = (so)kek ∈ L4.

– By the pumping lemma there are strings uvw = x with the length of
uv less than k and v 6= ε such that uw ∈ L4

– uv must be a prefix of (so)k

– There are two cases (a) v = (so)j for some 0 < j ≤ k or (b) this is not
the case. For case (b) uv is not a member of L4, hence a contradiction
or in case (a) we have (so)k−jek ∈ L4 and again this is a contradiction.

Award up to three marks for something that captures this line of argument (it
need not be formal).

(e) The PDA is (state 1 is the initial state, I have omitted the in arrow on state 1 for
legibility, the notation s, c, f, λ; λ stands for three transitions s, λ; λ, c, λ; λ, f, λ; λ:

?>=<89:;1

o,λ;A

JJ

e,A;λ

��
s,c,f,λ;λ 55

`,λ;λ // ?>=<89:;765401232

Allocate 1 mark for geting the PDA notation correct, two marks for the o and e
transitions and a further one mark for the other transitions.

iv

2. (a) Answer:

S → NP NP VP top
VP top → V

Marking guide: 2 marks each for each rule. 1 mark for recognizing that one
rule each is needed for S and for a SPECIAL TYPE of VP.

(b) Answer:

1 2

0

1

2

3 1 2

0

1

2

3

John loves Edinburgh Edinburgh John loves

V

NPR
NP

NPR

NPR

NPR

NP

NP

NPVP

S S

V
VPtop

Marking guide: The two WFSTs can be given EITHER as matrices OR as
graphs. This part should be marked INDEPENDENTLY of part a. So if the
student provides WFSTs that are correct with respect to the grammar rules
they’ve given in answer to part a, mark them correct.

(c) Answer:

VP → V NP NPR

Alternatively,

VP → V NP NP nopro
NP nopro → NPR

Marking guide: The second answer isn’t as good as the first, so deduct a
point. The given grammar only provides two ways of realising an NP – as a
proper name (NPR) or as a pronoun. So if the object NP can’t be realised as a
pronoun, then it has to be realised as an NPR.

(d) Answer: NO. You cannot avoid sentences like “Mary gave John it” simply by
assigning different probabilities to the given rules for re-writing NP or to the
given rules for di-transitives, as this would change the probability of any NP
anywhere being re-written as a pronoun.

Marking guide: 2 marks for recognizing that the answer is no. 3 marks for a
correct explanation.

(e) Answer: Yes. You can avoid these sentences with a lexicalised PCFG.

VP → V NP NP(PRO) Prob1
VP → V NP NP(NPR) Prob2

where Prob1 (the probability of the first rule, in which the head of the NP is a

v

pronoun) is much less than Prob2 (the probability of the second rule, in which
the head of the NP is a proper name).

Marking guide: 1 mark for recognizing that the answer is yes. 2 marks for
each rule.

vi

3. (a) Yes the grammar is ambiguous. Allocate 1 mark. There are two parses. The
essential difference is whether the prepositional phrase is attached to the noun
or the verb:

• Orpheus [saw [Eurydice in Hades]]: This uses the rule: VP → PR for
VP.

• Orpheus [saw [Eurydice] in Hades]: This uses the rule: VP → PR PP
for VP.

Allocate 1 mark for each parse.

(b) Yes. Allocate 1 mark

(c) The parse table is the following:

N,NP S S
V PR,VP PR,VP

N,NP NP
Prep PP

N,NP

Allocate 1 mark for the setup and one mark for each correct diagonal entered.

(d) The revised grammar is unambiguous because the prepositional phrase can only
be associated with the noun not with the verb. This is the only source of ambi-
guity in the language, so the omission of these rules results in an unambiguous
grammar. Allocate one mark for the answer and one for the justification.

(e) Use the following equations:

First1(PP) = First1(ε) ∪ First1(Prep N PP)

= {ε, Prep}
First1(PR) = First1(V NP)

= {V}
First1(VP) = First1(PR)

First1(NP) = First1(N PP)

First1(S) = First1(NP)

(f) The only nonterminal we need to consider is PP:

Follow1(PP) = Follow1(PP)∪Follow1(NP) = First1(VP)∪Follow1(PR) = {V,`}

(g) The parse table is:

vii

V N Prep `
S NP VP
NP N PP
VP PR
PR V NP
PP ε Prep N PP ε

Allocate three marks to the PP row and two marks to the other rows.

(h) Yes the grammar is LL(1) because no table entry comprises two or more pro-
ductions.

viii

