Module Title: Informatics 2A
Exam Diet (Dec/April/Aug): Aug 2016
Brief notes on answers:

1. (a) The equations are

X, 0Xs + (1 -9)X, + X,
Xy = (1-9)X,

X, = e+ (0-9)X,

X, = €

[2 marks for the X, equation, 1 mark each for X, X,]
(b) Solving for X,, X,, X, in turn, we have

X, =(0-9)", X,=(1-9)(0-9)*, X, =0+ (1—-9)(0—9)* +—(1-9)(0—9)*

[3 marks; roughly 1 mark for each of X, X,, X,]

(¢) The sequence will get lexed as
0:0;10; 3450

but soon after this we get an error due to the absence of a 0 transition from gq.
2 marks for the partial lexing, 1 mark for pinpointing the error
g g
2. (a) The three standard reasons are:

e ambiguity (as exemplified by S — S + 5)
e shared left prefixes (e.g. S — a | aT)
e left recursion (e.g. S — Sa)

[1 mark each for naming the problems, 1 mark each for the examples.]

(b) A suitable grammar is:

S - TR
R — e¢| +8
T — WdU
U — e (S)

[2 marks for curing the ambiguity in line 1; 2 marks for curing the left recursion
in line 2.]

3. (a) Three criteria: notional (relying on the meaning of the word), morphologi-
cal/formal (relying on morphological structure) and distributional (relying on
its context). [1 mark per criterion.]

(b) Open word classes are productive, they can have words add to them over time.
They denote mostly semantic content. Closed word classes do not grow very
quickly over time. They are mostly function words. [2 marks for open classes, 2
marks for closed classes]

(¢) The formula for Zipf’s law is f = k/r [1 mark]. In this case, inspection shows
that the data conform to Zipf’s law, taking k = 360000 [2 marks].

4. (a) “Every boy has access to a door”. Two logical forms:
Va.(boy(z) = Jy.(door(y) A hasAccessTo(z,y)))
Jy.(door(x) A Va.(boy(z) A hasAccessTo(z,y)))

For “Every boy has access to Door 37, we can only use the following interpreta-
tion because it refers to a specific door:

Jy.(door3(x) A Vx.(boy(z) A hasAccessTo(z,y)))

[1 mark per correct logical form]

(b) The chart is:

\Y 0 |0.1x0.05=0.005 0.005 * 0.1 * 0.9 < | 0.000504 = 0.1008 *
028 * 0.4 *« 0.9 =]0.1x%0.05> 0.0056 *
0.1008 0.4 %0.05

N 0 |07x04=0.28 0.005 % 0.5 = 0.2 < | 0.02016 = 0.1008 x*
028 % 0.1 « 0.2 =]0.5%04 > 0.0056
0.0056 0.1x0.4

(s)| 1.0|0 0 0

boys access doors

The POS sequence is N V N.

[6 marks for the chart, being lenient on minor calculation errors. 1 mark for the
POS sequence.]

5. (a) def reverse(string):
revstr = ""
length = len(string)
for index in range(length):
revstr += string[(length-index)-1]
return revstr

[Up to 4 marks, being not too harsh on minor syntactic errors|

(b) def isPalindrome(string):
return True if (string == reverse(string)) else False

[Up to 3 marks; ditto]

(c) This is not a regular language since it requires an “unbounded memory”. We
need to be able to remember the first part of the string, which can be arbitrarily
long, in order to match it against the second part. We can show this formally

using the pumping lemma. [3 marks for evidence of understanding; the answer
need not be too detailed or formal.]

6. (a) The state diagram is:

il

(b)

wf)s
®

(The order of numbering the states is immaterial.) [3 marks for evidence of
understanding; 3 more marks for correct details]

Omitting the garbage state (which corresponds to (), the state diagram for the
corresponding DFA is

[Added later: There should also be an s-transition from 1 to 0, and an e-
transition from 3 to 0.] A solution should also show a garbage state as the target
for some transition missing from the above diagram. [5 marks for right idea; 4
more marks for details. Deduct just 1 mark if garbage state not included.]

M is minimal if L, # L, whenever ¢ # ¢'. [2 marks for right idea, 1 mark for
precise expression.|

The DFA is minimal. The strings €, e, s, es, se suffice to show this, since any two
states differ with respect to their acceptance of at least one of these strings. That
is, no two rows in the following table are identical (where % denotes acceptance):

€ € § €5 se

24 * ok

=~ W N
*

iii

7.

(a) The parse table is as follows (the columns for else and endif are identical to

the one for then).

‘ + == if then Int Real String $
Exp Expl Ops Expl Ops Expl Ops Expl Ops
Ops | +Exp ¢ € €
Expl if--- Int Real String
Cond Exp == Exp Exp ==Exp Exp==Exp Exp == Exp

[5 marks for evidence of reasonable understanding. Another 5 marks for the
details; deduct roughly 0.5 marks for each incorrect cell.]

(b) Without endif, certain strings become ambiguous because the extent of an if

expression cannot be determined. E.g.

if 3==4 then 5 elseb6+7

The rules Ops — +Exp and Ops — € will now be competing for the cell (Ops, +)
in the table. [1 mark for the problem, 1 mark for the example, 2 marks for the
parse table clash.]

(¢) Typing rules are as follows:

e Expl phrases of the form Int, Real, String have type Int, Real, String

respectively.

e An Expl phrase if C' then F else E' endif is well-typed iff C' has type Bool

and F, E’ have the same type t. In this case, the whole <= expression
has type t.

e A Cond phrase E == E’ is well-typed iff E, E’ have the same type t. In this

case, the Cond phrase has type Bool.

e An Exp phrase EO (of form Expl Ops) has type ¢’ if E has some type ¢t and

t->t' is a possible type for O.

e The possible types of the Ops phrase € are t->t for any t¢.
e For an Ops phrase +F, there are three subcases:

— If E has type String, then +FE has type String->String (only).
— If E has type Int, then +FE has the types Int->Int and Real->Real.
— If E has type Real, then +F has the types Int->Real and Real->Real.

[Up to 11 marks according to how many of the ingredients are in place. Any
reasonable way of expressing the rules will be accepted. The number of marks
allocated to this part takes account of the time it will take to digest the instruc-
tions.|

The grammar is not recursive and as such generates a regular (even finite) lan-
guage. Here is a regular expression for it, where D, N, Aux and Prep stand for
the set of words that can be generated from these part-of-speech tags:

(DN 4+ N)(V + VDN + VN + Aux VN + Aux VDN)(e + Prep N + Prep DN)

[2 marks for seeing that it is regular. 3 marks for the reason and a suitable
regular expression. |

v

(b) The following is the adjusted grammar:

S — NPJ[sbjSg] VP[sg] | NP[sbj] VP[sg] PP

S — NP[shjPl] VP[pl] | NP[shjP1] VP[pl] PP[pl]

NP[sbjSg] — Dlsg] Nisg] | N[sg]

NP[sbjPl] — D[PI] N[P1] | N[P]]

Nipl] — boys | dogs

N[sg] — boy | dog

VP[pl] — V[base| | V[base] NP[obj] | Aux|pl] V|base] NP[obj]
VPlsg] — Vl[base] | V[sg] NP[obj] | Aux[sg] V[base] NP[obj]
Aux|sg] — doesn’t

Aux[pl] — don’t

NP[obj] — D N | N

V([sg] — stands | sits | chases

V[base] — stand | sit | chase

PP — Prep NP|[prp]

NP[prp] = DN | N

Prep — in | on

N — table | tables

N — boy | boys

Disg] — the | a | this| D[pl] — the | these|

[4 marks for the general idea of subject-verb agreement. 7 marks for a fully
correct answer. |

(¢) Any sentence which has the same bag of rules will get identical probability. For
example, “The boy sits on the table” versus “The table sits on the boy”. [4
marks for a suitable pair of sentences. 2 more marks for explaining the reason
in terms of bags of rules.|

(d) The following is a table of counts for each rule with the total probabilities:

S — NPJsbj] VP | 3] 3/4

S — NP[shj] VP PP | 1| 1/4
NP[shj] — D N | 3| 3/4
NP[sbj] = N |1|1/4

N — boy | 1] 1/6

N — boys | 2| 1/3

N — dog | 1] 1/6

N — dogs|2|1/3

VP —V|[1]1/3

VP — V NP[obj] | 1| 1/3
VP — Aux V NP[obj] | 1| 1/3
Aux — doesn’t | 1|1
Aux — don’t [0 | 0
NP[obj] = DN |21
NP[obj] = N[0 |0
V — stand | 2 | 1/2
V —sit|0]0

V — stands | 0] 0

V —sits |00

V — chase | 2 | 1/2

V — chases | 0| 0
PP — Prep NP[prp| | 1| 1
NP[prp] = DN |00
NP[prp] = N | 1|1
Prep —in |00

Prep —on|1]|1

N — table | 0 | 0

N — tables | 1| 1/4

N —boy|1]1/4

N — boys | 2| 1/2

D — the | 4| 4/5
D—-al0]0
D — these | 1
D — this | 0 |

| 1/5
0

[7 marks. There are 34 rules, so about 0.2 marks per correct rule.]

vi

