UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING
SCHOOL OF INFORMATICS

INFRO08008 INFORMATICS 2A: PROCESSING FORMAL AND
NATURAL LANGUAGES

Monday 15% August 2016

14:30 to 16:30

INSTRUCTIONS TO CANDIDATES

. Answer all five questions in Part A, and two out of three questions in
Part B. Each question in Part A is worth 10% of the total exam mark;
each question in Part B is worth 25%.

. Use a single script book for all questions.

. Calculators may be used in this exam.

Convener: D. K. Arvind
External Examiner: C. Johnson

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

Part A

1. Consider the following NFA for defining a class of integer literals. The input
alphabet is {—,0,1,...,9}.

(a) Write down a set of equations expressing the relationships between the lan-
guages X, X, X, X, associated with the states shown above. (To start you
off, we may note immediately that X, = {¢}.)

(b) Use Arden’s rule to solve these equations and thus obtain regular expressions
for each of X,,, X, X,.

(c) Suppose now that we use our NFA to lex the input string
0010—3450—-089

as a sequence of integer literals using the principle of longest match (i.e.
maximal munch). List the sequence of lexical tokens that this yields, and
indicate the point, if any, at which a lexing error will occur.

2. (a) List three common reasons why a given context-free grammar might fail to
be LL(1). In each case, give an example of either a single production or a
pair of productions that manifest the problem (you need not set up a whole
grammar of which these productions are a part).

(b) Convert the following grammar (with start symbol S) to an equivalent LL(1)
grammar.

S — T |S+S
T — id | id(S)

Page 1 of 7

(a) Describe the three criteria for deciding whether two words belong to the
same part-of-speech class. [3 marks]

(b) Describe the difference between open word classes and closed word classes.
Give an example of two open part-of-speech classes, and two closed ones. [4 marks]

(¢) Consider the following table of words that appeared in a corpus:

Rank | Word | Frequency

1 the 360000
2 that 180000
3 for 120000
4 is 90000
5 said 72000
6 on 60000
8 % 45000
9 it 40000
10 by 36000

12 from 30000
15 million | 24000
16 at 22500
18 as 20000
20 with 18000
24 the 15000
25 was 14400

Do the frequencies satisfy Zipf’s law in this case? If not, explain why not.
If they do, write down the formula that describes the relationship between
the frequency and the rank as given by Zipf’s law. [8 marks]

Page 2 of 7

4. (a) Write as many logical forms as you can find for different interpretations of
the sentence “Every boy has access to a door”. Do the same for the sentence
“Every boy has access to Door 3” (where you may treat the phrase “Door
3”7 as atomic). [8 marks]

(b) Consider the sentence
Boys access doors

Apply the Viterbi algorithm on it and find the best POS sequence assuming
the following hidden Markov model tables:
Emission matrix:
H boys ‘ access ‘ doors ‘
N[04 [02 0.4

V005 |09 0.05

Transition matrix (rows denote the current part of speech, and columns
denote the part of speech we transition to):

5 | N | v |
s : :
N || 0104 |7 marks]
V [105]0.1
5. A palindrome is a string that reads the same both forward and backwards.
(a) Write Python code for a method called reverse which takes a string as an
argument and reverses it. [4 marks]
(b) Add a method called isPalindrome that uses the reverse function to tell
whether a string is a palindrome or not. [3 marks]
(c) Is the language of palindromes over {a, b} regular? Give a brief explanation
for why or why not (you need not give a full mathematical proof). [3 marks]

Page 3 of 7

Part B

6. Consider the alphabet ¥ = {e, s, w}, where the three symbols stand for eat, sleep,
work respectively. We shall consider the language defined by the following regular
expression (given here in mathematical notation):

(a)

((w(we)s) + (w(ws)"e))”

Draw the state diagram for an NFA (without e-transitions) that accepts
the above language. Your NFA should involve exactly 5 states, which you
should label as 0,1,2,3,4 in any order. You are advised to construct your
NFA directly by inspection of the above regular expression, rather than by
following a general algorithm precisely.

Apply the subset construction to your NFA from part (a) to convert it into
a DFA that accepts the same language. You need not include unreachable
states in your diagram. You should indicate which state in your DFA serves
as the ‘garbage state’ GG. To reduce clutter, you need not display all transi-
tions from non-garbage states to GG, though you should include at least one
such transition.

Given any state ¢ in a DFA M, we may write L, for the set of all strings
that take us from ¢ to an accepting state in M. With reference to the sets
L,, give a mathematical criterion for a DFA M to be minimal.

Is your DFA from part (b) minimal? If so, write down a small set of strings
which collectively suffice to distinguish all states of the DFA, and justify
that they do so. If not, construct the state diagram for the minimization
of this DFA (you are not required to show the execution of the standard
algorithm in detail).

Page 4 of 7

[6 marks]

[9 marks]

[3 marks]

[7 marks]

7. In this question we consider an LL(1) grammar for a language of expressions. The
terminals are the tokens 4+, ==, if, then, else, endif, along with the symbols
Int, Real, String which stand for the lexical classes of integers, real numbers and
strings respectively. The start symbol is Exp. The productions are as follows:

(a)

(b)

Exp — Expl Ops

Ops — ¢ | +Exp

Expl — Int | Real | String | if Cond then Exp else Exp endif
Cond — Exp == Exp

Construct the LL(1) parse table for this grammar. You may find it helpful
to compute the relevant First and Follow sets, but you are not required to
do so.

What problem would arise if the token endif were omitted from the above
grammar? Give an example of a string that illustrates the problem, and
indicate the point at which the problem would manifest itself in the attempt
to construct a parse table.

We next consider a type system which assigns one of the types Int, Real,
String to certain expressions. We shall here consider the operator + to be
overloaded so that it can bear any of the following five type signatures:

Int,Int -> Int
Int,Real -> Real
Real,Int -> Real

Real,Real -> Real
String,String -> String

For instance, the second of these allows us to form 3 4 4.5 as a well-typed
expression of type Real. By contrast, the expression "a” + 4.5 is not admit-
ted by any of the above signatures. A condition e==¢’ will be well-typed if
and only if both e, ¢’ are well-typed and have the same type.

Give a compositional set of typing rules that define which phrases of the
language are well-typed, and what their possible types are. Your rules should
have the following properties:

e An Exp or Expl phrase, if well-typed, should have exactly one of the
types Int,Real, String.

e A Cond phrase, if well-typed, should by convention have type Bool.
QUESTION CONTINUES ON NEXT PAGE

Page 5 of 7

[10 marks]

[4 marks]

QUESTION CONTINUED FROM PREVIOUS PAGE

e An Ops phrase may be assigned a type of the form ¢t->t’, where t,t' €
{Int,Real, String}. For instance, the operation +5 may be assigned
the type Int->Int, since for example it may be applied to the integer
expression 3 to yield the integer expression 3+5. Note, however, that
an Ops phrase may have more than one possible type: for example, the
operation +5 may also have the type Real->Int. Your typing rules
should define the set of all possible typings in the case of Ops phrases.

You should give a typing rule for each production X — « of the grammar,
specifying the possible types for an X-phrase of the form « to be well-typed
in terms of the types of the non-terminals (if any) appearing within «. (This
is reminiscent of the compositional approach to natural language semantics.)
Your rules may be expressed in a mix of English and mathematical notation.
The most complex typing rule will be the one for Ops — + Exp. [11 marks]

Page 6 of 7

8. The following is a parameterized CFG for a small subset of English:

S — NP[sbj] VP | NP[sbj] VP PP
NP[sbj] — D N | N

N — boy | boys | dog | dogs

VP — V | V NP[obj] | Aux V NP[obj]
Aux — doesn’t | don’t

NP[obj] — D N | N

V — stand | sit | stands | sits | chase | chases
PP — Prep NP|prp]

NP[prp] = D N | N

Prep — in | on

N — table | tables

N — boy | boys

D — the | a | these | this

What is the lowest level in the Chomsky hierarchy at which the language
defined by this grammar resides? If the language is regular, explain why
and write a regular expression for it. If not, explain why not.

The above grammar over-generates in the sense that it generates sentences
that are not grammatical in English. Correct the grammar by adding agree-
ment markers on the nonterminals (and perhaps copying or splitting rules)
so that it only generates the grammatical sentences obtained from original
grammar. In addition, give two examples of sentences generated by the
original grammar that illustrate different ways in which such sentences may
be ungrammatical.

Give an example of two sentences generated by the original grammar that
will have identical probability according to any probability assignment to
the rules in the grammar as a probabilistic context-free grammar. Explain
your answer.

The following corpus of four parsed sentences is given to you:
[S [NP[sbj] [D these| [N boys| | [VP [V stand]]]

[S [NP[sbj] [N dogs| | [VP [V stand] | [PP [Prep on] [NP[prp] [N tables] |] |
[S [NP[sbj] [D the| [N dogs]] [VP [V chase] [NP[obj] [D the| [N boys| | | |

[S [NP[sbj] [D the] [N boy]] [VP [Aux doesn’t] [V chase] [NP[obj] [D the] [N

dog]]]
Use this corpus to derive probabilities for the productions of the original

grammar using frequency counts.

Page 7 of 7

[5 marks]

[7 marks]

[6 marks]

[7 marks]

