UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING
SCHOOL OF INFORMATICS

INFORMATICS 2A: PROCESSING FORMAL AND NATURAL
LANGUAGES

Friday 2224 August 2014

14:30 to 16:30

INSTRUCTIONS TO CANDIDATES

. Answer all five questions in Part A, and two out of three questions in
Part B. Each question in Part A is worth 10% of the total exam mark;
each question in Part B is worth 25%.

. Use a single script book for all questions.

. Calculators may be used in this exam.

Convener: J. Bradfield
External Examiner: C. Johnson

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

PART A
ANSWER ALL QUESTIONS IN PART A.

1. (a) Name the four language classes in the Chomsky hierarchy in order of in-
creasing expressive power. That is, start with the smallest language class
and end with the largest language class. [4 marks]

(b) Give three different definitions of the smallest language class in the Chomsky
hierarchy. [3 marks]

(c) Describe, in a few sentences, the high-level structure of an argument that
shows that the three definitions in your answer to part (b) are all equivalent;
that is, they all define the same class of languages. (The level of detail
required here is that you should clearly identify any constructions involved,
but you need not describe in detail how the constructions are defined.) [3 marks]

2. The code fragment:
if X<=A2z Then 123ELSE elsel
has the following intended lexing.

if X <= A2z Then 123 ELSE else0
IF VAR (0P VAR THEN NUM ELSE VAR

The bottom row displays the lexical classes, which, for this example, classify:
individual keywords (IF, THEN, ELSE), variables (VAR), infix operators (OP), and
numeric literals (NUM).

(a) Use the egrep pattern language to give a reasonable definition for each of
the six lexical classes above. (8 marks]

(b) Assign priorities to the six lexical classes so that a longest-match lexer would
produce the intended lexing behaviour. [2 marks]

3. (a) Suppose we are given an arbitrary context-free grammar (CFG) with set of
terminals Y, set of nonterminals NV, set of productions P, and start symbol
S. List the properties that a tree must possess in order to be a parse tree
for the grammar. [5 marks]

(b) What does it mean for a CFG to be structurally ambiguous? [1 mark]

(¢) Give an example of a structurally ambiguous CFG, and justify your claim
that it is structurally ambiguous. [4 marks]

Page 1 of 8

4. (a) In a bigram tagger, we are given, for each word w, a frequency table for
the possible parts of speech of w, given the part of speech of the preceding
word (if any). In the following examples, rows correspond to potential tags
for w itself, and columns to the tag of the preceding word (or start of sen-
tence marker). Note that ‘her’ may be either an object pronoun (OP) or a
possessive pronoun (PP).

let ‘ N V start her ‘ N V start
N2 1 5 OP|2 23 1
Vid4 2 11 PP|6 17 14
duck ‘ N V OP PP start fly ‘ N V start
N|5 7 3 4 2 N|5 3 1
VI8 4 6 0 1 VI 10 4 3
Use these tables to tag the phrase:
let her duck fly
Give the reason for each tag you assign. [5 marks]

(b) Explain briefly how the idea of a bigram tagger can be generalized to that
of an n-gram tagger. Mention one potential advantage of a 4-gram tagger

over a bigram tagger, and one problem that such a tagger would typically
face. (3 marks]

(c) What is the main advantage of the Viterbi algorithm over a bigram tag-
ger? Briefly indicate how and why this algorithm might plausibly assign a
different tagging to the above phrase. [2 marks]

5. The following is a probabilistic context-free grammar with start symbol S:

S — NP V NP (L0)
NP — N (0.5) | AN (0.3) | NPN (0.2)
V — forecasts (0.2) | calm (0.2) | describe (0.2)
| warns (0.2) | predicts (0.2)
N — forecasts (0.4) | seas (0.4) | office (0.2)
A — calm (0.4) | stormy (0.5) | meteorological (0.1)

(a) Draw all possible parse trees for the sentence
meteorological office forecasts calm seas

and calculate their probabilities, showing how your answers are derived. [5 marks]

(b) Now suppose we are given the following sentence with a missing word:

meteorological office forecasts — seas

Page 2 of 8

We are also told that the missing word is one of the following:
calm stormy describe

According to the above grammar, which is the most probable of these choices?
In other words, which choice yields the word sequence that is most likely to
be generated by the above rules? Justify your answer. [5 marks]

Page 3 of 8

PART B
ANSWER TWO QUESTIONS FROM PART B.

. A company that specialises in drilling deep under the earth’s surface uses a drill
that has two configurations: Down, in which the the drill bit can be turned a small
angle clockwise to drill down; and Up, in which the drill bit can be turned the
same angle anticlockwise, to raise the bit. Instructions are given to the drill using
words over the alphabet ¥ = {d, u, c}. Here: d instructs the drill to turn clockwise
and hence move the bit down; u instructs the drill to turn anticlockwise and hence
move the bit up; and ¢ instructs the drill to change configuration (either from
Down to Up, or from Up to Down). In a legal instruction sequence, d instructions
are only permitted when the drill is in the Down state, and u instructions are
only permitted when the drill is in the Up state. The drill starts off in the Down
state.

The language of valid instruction sequences can be defined mathematically as

L = {z € ¥* |there are an even number of ¢ symbols to the left of every d,
and an odd number of ¢ symbols to the left of every u}

where “to the left of” means occurring anywhere between the start of the word
and the symbol in question.

(a) Draw a deterministic finite automaton (DFA) that recognises the above
language L.

(b) Using your DFA, write out a system of simultaneous equations describing
the language L, and solve these equations using Arden’s Rule to produce a
regular expression for L.

(¢) A test drilling consists of two phases: first the bit is drilled down to a
certain depth; then it is raised back to its starting position. The language
of instruction sequences for test drillings can be defined mathematically by:

{d"cu™ | n>1}

Say whether the language of test drillings is regular. If it is, justify this by
giving an NFA or regular expression for the language. If it is not regular,
prove this using the Pumping Lemma.

(d) Give a context-free grammar for the language of test drillings.

(e) After a test, the drill bit may again be lowered to the level reached by the
test drilling so that drilling can continue. The language of control sequences
for such extended tests is described mathematically by:

L=A{d"cu"cd"|n>1}

State the level at which this language resides in the Chomsky hierarchy.
(You do not need to justify your answer.)

Page 4 of 8

[4 marks]

[10 marks]

[7 marks]
[3 marks]

[1 mark]

7. The following is a grammar for a very simple class of arithmetical expressions,
containing operations written in textual form. The terminals are

add take-away () int
where int represents a lexical class of numeric literals (e.g. 0, 23).

Exp — Expl Ops
Ops — € | add Expl Ops | take-away Expl Ops
Expl — int | (Exp)

(a) This grammar is LL(1). Write out its parse table. (You do not need to
explain how you obtain the parse table. In particular, you are not required
to say what the first and follow sets of the nonterminals are.) [6 marks]

(b) Describe the step-by-step execution of the LL(1) predictive parsing algo-
rithm in parsing the expression below.

2add 1
[6 marks]
We next consider how the approach to semantics, used for natural languages, can
also be applied in the context of formal languages, such as the one above. To this
end, we equip the grammar with semantic clauses, whose effect is to compute a
number as the meaning of an expression.
Exp — Expl Ops { Ops.Sem (Expl.Sem) }
Ops — € {Az.x }
Ops — add Expl Ops { Az.Ops.Sem (z + Expl.Sem) }
Ops — take-away Expl Ops { Az.Ops.Sem (x — Expl.Sem) }
Expl — n {n}
Expl — (Exp) { Exp.Sem}
Note that the semantics of a numeric literal n is just the number n itself.
(c) Draw the syntax tree for the expression
3 take-away 2 add 1
leaving plenty of room for annotations. Starting at the bottom of the tree,
annotate each node with the raw lambda-expression assigned to it by the
semantics defined in the table above. [6 marks]
(d) Show the sequence of -reductions by which the lambda-expression associ-
ated with the root of this tree reduces to a normal form. [4 marks]

Page 5 of 8

(e) The semantics defined above implements the standard convention by which
the operations of addition and subtraction associate to the left. For example,
the expression 3 take-away 2 add 1 is interpreted as (3 — 2) + 1. Martians,
however, are rumoured to use the opposite convention, by which these opera-
tions associate to the right. Thus a Martian would read 3 take-away 2 add 1
as 3—(2+1). How can the grammar’s semantic clauses be modified so that
the resulting semantics interprets the operations as right associative? [3 marks]

Page 6 of 8

8. Consider the following context-free grammar (with start symbol S) for a class of
English sentences involving tag questions:

S — NP VP , TagQ
NP — The N
VP — Aux NegOptl V
TagQ — Aux NegOpt2 Pron ?
NegOptl — € | -n't
NegOpt2 — ¢ | -n't
N — eagle | eagles | rocket | rockets
Aux — has | have | had | does | do | did
V. — land | landed | fly | flown
Pron — it | they

For example, this grammar generates the sentence:
The eagle has landed, hasn’t it?

Note that we understand -n’t to be a suffix that attaches itself to the preceding
word. The reason for including two different NegOpt non-terminals will appear
below.

However, the grammar as it stands also generates many sentences that are un-
grammatical in English. For example:

The eagles has landed, hasn’t it?
The eagle has landed, hasn’t they?
The eagle has landed, doesn’t it?
The eagle hasn’t landed, hasn’t it?

(a) Construct a parameterized version of the above grammar which generates
only grammatical sentences. Your parameterized grammar should make use
of the following attributes and associated variables:

Attribute ‘ Variable ‘ Values

Number n sing, plur
Choice of auxiliary a have, had, do, did
Polarity X pos, neg

You need not write out all of the rules for expanding Aux and V, but should
include a representative sample.

To start you off, the first rule of your grammar should be:

S — NP[n] VP[n,ax] , TagQ[n,ax]

Page 7 of 8

Notice that you may give different parameterized rules for NegOptl and
NegOpt2.

Using your parameterized grammar, construct a CYK-style parse table for
the sentence:

The rocket didn’t fly, did it?

(You should do this for your grammar as it stands—do not convert it to
Chomsky Normal Form.) Each cell in the table may contain one or more pa-
rameterized non-terminals, e.g. NP[sing]. Note that the same non-terminal
may sometimes occur twice in the same cell but with different parameters.

You should include all possible entries in your table, whether or not they
contribute to an overall parse of the sentence. You should not attempt to
add entries for empty constituents, but should of course include entries for
any larger constituents that involve them. Finally, you need not include
pointers or other information to show how phrases are broken into their
immediate constituents.

Suppose now that we wish to implement an auto-complete facility for the
above class of sentences: the user types the portion of a sentence up to the
comma (e.g. “The eagle has landed,”) and the system responds by supplying
the appropriate tag question (e.g. “hasn’t it?”). Briefly outline how such a
system might be implemented with the help of the parameterized grammar
constructed in part (a) above.

Page 8 of 8

[11 marks]

[11 marks]

[3 marks]

