
Inf2A Assignment 2

A Natural Language Query System

in Python/NLTK

Shay Cohen1

Issued 9 November 2018

The deadline for this assignment is 4 pm, Friday 30 November. Please read

through the whole of this handout before you start.

In this assignment, you will use Python(Python2) and NLTK to construct a system

that reads simple facts and then answers questions about them. You can think of it as

a simple form of both machine reading and question answering. In the real world, such

systems read large amounts of text (e.g. Wikipedia or news sites), populate database

with facts learned from that text, and use the database to answer general knowledge

questions about the world.2 We won’t require you to build a system that works at that

scale! But this assignment should give you a basic idea about how such a system works.

Your completed system will enable dialogues such as the following:

$$ John is a duck.

OK

1Mostly based on a previous assignment by John Longley, with contributions from Nikolay Bogoy-
chev, Adam Lopez, Toms Bergmanis, and others.

2e.g. https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html

1

$$ Mary is a duck.

OK

$$ John is purple.

OK

$$ Mary flies.

OK

$$ John likes Mary.

OK

$$ Who is a duck?

John Mary

$$ Who likes a duck who flies?

John

$$ Which purple ducks fly?

None

Sentences submitted by the user are either statements or questions. Statements have

a very simple form, but the system uses them to learn what words are in the language

and what parts of speech they have. (For example, from the statements above, the

system learns that duck is a noun, fly is an intransitive verb and so on.) Questions can

have a much more complex form, but can only use words and names that the system

has already learned from the statements it has seen.

In Part A, you will develop the machinery for processing statements. This will include

a simple data structure for storing the words encountered (a lexicon), and another for

storing the content of the statements (a fact base). You will also write some code to

2

extract a verb stem from its 3rd person singular form (e.g. flies → fly).

Parts B to D develop the machinery for questions. Part B is concerned with part-of-

speech tagging of questions, allowing for ambiguity and also taking account of singular

and plural forms for nouns and verbs. In Part C you are given a context free grammar

for the question language, along with a parser, courtesy of NLTK. Your task is to write

some Python code that does agreement checking on the resulting parse trees, in order

to recognize that e.g. Which ducks flies? is ungrammatical. Agreement checking is

used in the system to eliminate certain impossible parse trees. In Part D, you will

give a semantics for questions, in the form of a Python function that translates them

into lambda expressions. These lambda expressions are then processed by NLTK to

transform them into logical formulae; the answer to the question is then computed by a

back-end model checker which is provided for you.

Finally, in Part E, you are invited to supply a short comment on ways in which the

resulting system might be improved.

You will need to download the four template files statements.py, pos_tagging.py,

agreement.py, semantics.py from

http://www.inf.ed.ac.uk/teaching/courses/inf2a/assignments

This contains portions of code that are already provided for you, and headers for the

pieces of code you have to write. As you proceed, you should check that you understand

what the provided code is doing, and what the various NLTK functions are achieving.

By the end, you will then have understood all the ideas that have gone into the creation

of this system.

Some general points of advice:

3

• Everything you need to know about Python and NLTK to write your code is

covered by the worksheets from earlier lab sessions. Some of the provided pieces

of code may feature Python constructs you have not seen before, but you should

have little difficulty in understanding them. If you have any questions on the

Python/NLTK aspects of this assignment, please ask a demonstrator for help

during one of the lab sessions.

• The templates for Parts B,C,D each start with one or more statements that import

the material from previous parts (e.g. from statements import *). This means

that functions defined in one file may be referred to in later files by their plain

name. (All your source files should of course be kept in the same directory.)

• You are responsible for testing your own code thoroughly before you submit it.

Even for experienced programmers, it is rare for any program to work perfectly first

time without testing. We have found in the past that students frequently drop

marks because of inadequate testing. You are recommended to start a Jupyter

Notebook for testing, but remember to auto-reload modules.

• Even if you work mainly on your own machine, you should do a final check that

your code works on the DICE machines before you submit it. It is also possible

that some parts of the code may not work with different versions of NLTK.

• Part C may be the most difficult part of the assignment. However, even without

completing Part C, it is possible to proceed to Part D and obtain a dialogue system

that works in simple cases. To do this, simply replace the function check_node

from Part C by a dummy implementation that always returns True.

4

Part A: Processing statements [25 marks]

In this part you will construct some machinery for processing statements. This will

involve some simple Python programming to create the necessary data structures, and

also the use of regular expression matching facilities in order to build in a little knowledge

of English verb forms.

Complete the template file statements.py as follows:

1. Create a class Lexicon for storing new word stems as we encounter them. The

class should provide a method add(stem,cat) for adding a word stem with a given

part-of-speech category, and method getAll(cat) which returns all known word

stems of a given category. For instance:

lx = Lexicon()

lx.add("John","P")

lx.add("Mary","P")

lx.add("like","T")

lx.getAll("P") # returns ["John","Mary"]

Your implementation should allow the same word to be stored with more than one

POS category (e.g. fly might be both a transitive verb and a noun). It should also

allow the same (stem,cat) pair to be added more than once, although getAll

should return a list without repetitions (the order of words is not important).

In use, the parameter cat will always be one of five strings denoting part-of-speech

categories for word stems:

5

"P" proper names (John, Mary)

"N" common nouns (duck, student)

"A" adjectives (purple, old)

"I" intransitive verbs (fly, swim)

"T" transitive verbs (like, hit)

(It is intentional that the tagset used here is simpler than that used in Part B

onwards. It is also intentional that only open-class words are stored in the lexicon.)

2. Create a class FactBase for storing the semantic content of statements. These

are represented via unary facts such as duck(John), and binary facts such as

love(John,Mary). You should provide methods

addUnary(pred,e1) addBinary(pred,e1,e2)

queryUnary(pred,e1) queryBinary(pred,e1,e2)

for adding new facts and for querying whether some fact is among those stored.

For instance:

fb = FactBase()

fb.addUnary("duck","John")

fb.addBinary("love","John","Mary")

fb.queryUnary("duck","John") # returns True

fb.queryBinary("love","Mary","John") # returns False

6

(In actual use, the predicate symbols will be strings such as "N_duck" and "T_love",

tagged to differentiate predicates arising from different parts of speech, but your

implementation should work for arbitrary predicate strings.)

3. We now consider the problem of extracting a verb stem from its 3rd person singular

present tense form, henceforth called its 3s form. (E.g. flies → fly).

Going in the other direction, below are a selection of rules for deriving the 3s form

from the verb stem. These rules have been carefully formulated so that no two

verb stems will ever yield the same 3s form, meaning that the process is reversible.3

For our purposes, a vowel is one of the letters a,e,i,o,u.

• If the stem ends in anything except s,x,y,z,ch,sh or a vowel, simply add s

(eats, tells, shows).

• If the stem ends in y preceded by a vowel, simply add s (pays, buys).

• If the stem ends in y preceded by a non-vowel and contains at least three

letters, change the y to ies (flies, tries, unifies).

• If the stem is of the form Xie where X is a single letter other than a vowel,

simply add s (dies, lies, ties — note that this doesn’t account for unties).

• If the stem ends in o,x,ch,sh,ss or zz, add es (goes, boxes, attaches, washes,

dresses, fizzes).

• If the stem ends in se or ze but not in sse or zze, add s (loses, dazes, lapses,

analyses).

3Actually, I haven’t been able to think of any clear example in English of two different verb stems
with the same 3s form. If you find one, let me know!

7

• If the stem is have, its 3s form is has.

• If the stem ends in e not preceded by i,o,s,x,z,ch,sh, just add s (likes, hates,

bathes).

Your task is to turn these rules around so as to retrieve the verb stem from the 3s

form. Write a function verb_stem(s) that does this, using the re.match function

for regular expression matching, along with the built-in string processing facilities

of Python. If the string s cannot be generated by the above rules, verb_stem(s)

should return the empty string.

Example:

verb_stem("flies") # returns "fly"

verb_stem("flys") # returns ""

4. These rules correctly account for the 3s forms of most common English verbs,

although you may be able to think of exceptions. Such rules, however, do not

use part of speech information of a given word. For example, according the rules

above verb_stem("cats") would return cat. Your task is to extend the function

verb_stem(s) to validate that the word accepted as input is indeed used as a

verb. To that end you need to use nltk.corpus.brown.tagged_words() as the

gold standard of English.

In the Brown corpus, the verb stem and the 3s form are tagged as VB and VBZ,

respectively. Given a possible 3s form as input, if it has never been tagged at VBZ,

and its hypothesised stem has never been tagged as VB, verb_stem(s) should

8

return the empty string. However, if you’ve seen either the stem form or 3s with

the correct tag, return the hypothesised stem. You don’t have to check verbs have,

are, or do.

To conclude this part, read through the provided code for add_proper_name and

process_statement and check that you understand what it is doing. You will now

be able to test your code by processing some simple statements (presented as lists

of words) and checking that your lexicon and fact base are updated appropriately.

Part B: POS tagging [20 marks]

We next develop some machinery for identifying all possible parts of speech for a given

word with respect to a given lexicon, distinguishing between singular and plural forms.

The tags we shall use are as follows:

P A Ns Np Is Ip Ts Tp BEs BEp DOs DOp AR AND WHO WHICH ?

The first eight of these are derived from the five POS categories above, distinguishing

singular and plural forms for nouns and stems and 3s forms for verbs. (E.g. cat Np, cats

Ns and like Tp, likes Ts.) The remaining tags are for particular grammatical function

words (plus a question mark) as specified by the given list tagged_function_words.

Complete the template file pos_tagging.py as follows.

1. The main new phenomenon we need to account for here is plural formation of

nouns. We shall not attempt anything like a comprehensive treatment of English

plurals, but will content ourselves with the following selection of rules:

9

• For some words the plural form is the same as the singular (e.g. sheep or

buffalo). We call these irregular plural forms unchanging_plurals.

• If the noun stem ends in man, the plural is obtained by replacing this with

men (e.g. woman → women).

• Otherwise, the rules for 3s formation from Part A are applied (e.g. dogs,

countries, ashes).

First, write a function unchanging_plurals which extracts a list of nouns that

are unchanging plurals from a corpus provided in sentences.txt. Each line of

sentences.txt contains one sentence. Each word is followed by a delimiter | and

its POS tag from Penn treebank tagset4:

... reporters|NNS are|VBP so|RB busy|JJ ...

Note that for this task the only relevant tags are NN and NNS. You should identify

an “unchanging plural” by checking whether a noun appears to be the same both

when it is tagged as NN and as NNS.

Now write a function noun_stem(s) which returns the singular form of any plu-

ral obtained via these rules. If s cannot be generated as a plural by the rules,

noun_stem(s) should return "".

2. Now write a function tag_word(lx,wd) which returns a list of all possible taggings

for a given word with respect to a given lexicon. For example, for a suitably trained

lexicon lx, the behaviour should be:

4Penn treebank tagset: https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_

treebank_pos.html

10

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

tag_word(lx,"John") # returns ["P"]

tag_word(lx,"orange") # returns ["Ns","A"]

tag_word(lx,"fish") # returns ["Ns","Np","Ip","Tp"]

tag_word(lx,"a") # returns ["AR"]

tag_word(lx,"zxghqw") # returns []

Your function should use not only the lexicon, but also your functions verb_stem,

noun_stem and the provided list tagged_function_words.

Note that your code for Part B should not depend on idiosyncratic features of your

own Part A implementation, but only on features specified by the instructions for Part A

above. In other words, your code for Part B must work correctly in conjunction with

anyone else’s (correct) implementation of Part A, not just your own.

Finally, look at the provided code for tag_words, a recursive method that provides

all possible taggings for a given list of words. Experiment with this function. Note that

in the worst case, the number of taggings may be exponential in the number of words.

Can you find some examples?

Part C: Syntax and agreement checking [25 marks]

The provided context free grammar grammar (in agreement.py) specifies the language

of questions. The terminals of this grammar (enclosed in double quotes) are precisely

the POS tags used in Part B. The grammar contains a little redundancy in that e.g. it

has both a non-terminal A and a terminal "A" for adjectives — this is necessary because

11

NLTK does not allow the right hand side of productions to mix terminals and non-

terminals. Note that we have opted to use the colloquial Who rather than the more

formal Whom in questions such as Who does John like?

A parser for this grammar is provided by NLTK. The given function all_parses

returns all possible parse trees for all possible POS taggings of a given word list. A

given parse tree tr can also be displayed graphically using tr.draw() .

Take some time to familiarize yourself with this grammar and experiment with

all_parses. Notice that multiple parse trees can arise both from POS ambiguity and

from structural ambiguity — you may enjoy devising examples.

Your task now is to implement singular/plural agreement checking for the resulting

parse trees, verifying that verbs agree in number with their subjects. We consider only

a single ‘number’ attribute with the two values s,p; we use x,y as attribute variables.

Formally, the relevant constraints are captured by the following parameterized version

of our grammar rules:

S -> WHO QP[y] QM | WHICH Nom[y] QP[y] QM

QP[x] -> VP[x] | DO[y] NP[y] T[p]

VP[x] -> I[x] | T[x] NP | BE[x] A | BE[x] NP[x] | VP[x] AND VP[x]

NP[s] -> P | AR Nom[s]

NP[p] -> Nom[p]

Nom[x] -> AN[x] | AN[x] Rel[x]

AN[x] -> N[x] | A AN[x]

Rel[x] -> WHO VP[x] | NP[y] T[y]

N[s] -> "Ns" etc.

12

(In the second rule, we exploit the fact that the stem of a transitive verb coincides with

its plural form.)

Complete the template file agreement.py as follows.

1. Write a function N_phrase_num which returns the number attribute (either ’s’

or ’p’) for any syntax tree of category N, AN, Nom or NP according to the above

rules, assuming the tree satisfies the agreement rules. This can be determined

by looking at the number attribute of the head noun of the phrase, where proper

names are treated as singular. You should write a recursive function that extracts

this information from the given syntax tree; two clauses of the definition are pro-

vided for you. Note that syntax trees have the NLTK type Tree, and the following

operations are available for a tree tr:

tr.label() the label on the root node of tr

tr[i] the subtree with index i (starting at 0)

len(tr) the number of subtrees

2. Write a similar recursive function V_phrase_num which returns the number at-

tribute of a syntax tree of category T, I, BE, DO, VP, Rel or QP according to the

above rules, assuming the tree satisfies the agreement rules. In many cases, this

can be obtained as the number attribute of the phrase’s head verb; in other cases,

you may need to think what to do.

In some cases, the number attribute of a phrase is undetermined by its contents:

for instance, the phrase does John like (of category QP) could be either singular

13

or plural, since it can combine with either Which duck or Which ducks. In such

cases, your function should return the result "".

Again, two clauses in the definition are provided for you.

3. Now write a function check_node(tr) which checks whether the agreement con-

straints imposed by our parameterized grammar hold for the top-level rule appli-

cation in the tree tr. For instance, if the root node is an S which expands to

WHICH Nom QP QM, we just need to check that the number attributes of the Nom

and QP constituents match; this clause is done for you. (Note that the provided

function top_level_rule obtains the relevant (non-parameterized) production in

the form of a string.)

Your function check_node only needs to work for trees of category S, QP, VP,

NP, Nom, AN, Rel; it need not work for the preterminals N, I, T etc. Notice

that you only need to check constraints arising from the right hand sides of the

parameterized rules in question — constraints involving the left hand side do not

need to be checked, since for a rule such as AN[x] -> N[x], the fact that both

sides have the same number attribute should follow automatically from the way

N_phrase_num is computed.

Once again, two clauses are provided.

The provided function check_all_nodes now applies check_nodes recursively to

check that all nodes in the tree are correct according to our agreement rules. These rules

can now be used to resolve ambiguities in certain cases: the function all_valid_parses

filters out any trees that do not satisfy the agreement constraints.

14

Note that our parsing and agreement checking have both treated the sentence purely

as a list of POS tokens rather than actual words. As a preparation for Part D, the

provided function restore_words reinstates the word stems into the tree, also prefixing

them with tags N_, I_, . . . as appropriate. You should experiment briefly with this

function in order to understand what it is doing.

Part D: Semantics of the query language [25 marks]

To complete the system, you will need to write a function which converts the trees

returned by restore_words in suitable lambda-expressions (in the form of strings).

These expressions are then passed to NLTK’s built-in logic parser and simplifier to

obtain logical formulae. Finally, a model checker is provided for checking which entities

(i.e. which proper names) satisfy the logical formula relative to the fact base, and this

provides the answer to the query.

More specifically, your code should translate a complete question into a lambda-

expression of type < e, t >, which will then be β-reduced down to one of the form

"(\\x.P)", where P is a formula with free variable x. For example:

Who is a duck?

(\x. N_duck(x))

Which orange duck likes a frog?

(\x. ((A_orange(x) & N_duck(x)) &

(exists y. (N_frog(y) & T_like(x,y))))

Who does John like?

15

(\x. (exists y.((y=John) & T_like(y,x))))

One point may seem a little surprising: the semantics will make no use at all of the

singular/plural distinction. For instance, the questions Who is an orange duck? and

Which ducks are orange? will have the same meaning: in either case, we are asking for

the complete list of orange ducks. Likewise, Which ducks like a frog? and Which ducks

like frogs? are both interpreted as asking for the list of ducks each of whom likes at

least one frog. You might be able to think of cases where this policy seems unnatural,

but in general it works reasonably and avoids some nasty complications.

The template file semantics.py includes the model checker and dialogue session

code. Your task is to complete the definition of the recursive function sem to provide a

compositional translation from trees (as returned by restore_words) to lambda expres-

sions. A few sample clauses are provided for you. The clauses that will require the most

thought are those involving transitive verbs. Generous use of brackets is recommended!

Phrases of category P should translate to expressions of type e (entities); and phrases

of category T to expressions of type < e,< e, t >> (binary predicates) All other phrases

should translate to expressions of type < e, t > (unary predicates).

You can test your semantic function by using NLTK to parse and simplify the result-

ing expressions, as illustrated by the comments in the template file. Once Parts A–D

are all completed, you can check that they all fit together by entering a fresh Python

session and typing

from semantics import *

dialogue()

16

Or just run

python2 semantics.py

This will launch a dialogue session into which you can type statements and questions

at will. Statements and questions end with ”.” and ”?” respectively. Build up your

own scenarios and ask complex queries about them, testing whether various kinds of

ambiguity are correctly detected and resolved where appropriate.

Part E: Limitations of the system [5 marks]

From your experience of playing with the completed system, you may discover fea-

tures that you may feel could be confusing or misleading for users. In a plain text file

improvements.txt, write a short paragraph explaining at least one way in which one

might wish to improve the current system without introducing any major new extensions

to the language it covers. Also explain whether you think such an improvement would

be easy or difficult to implement, given the material you have learned in the course.

Justify your answer.

Greater credit will be given for points that are not simply superficial features of the

implementation, but engage with the ideas covered by the course.

17

Submission instructions

To submit your work from the DICE machines, use the commands

submit inf2a cw2 statements.py pos_tagging.py

agreement.py semantics.py improvements.txt

Do not submit any other files you write.

An important note: your solution should be implemented so that it runs relatively

fast, even with the processing of sentences.txt. If it runs in an unreasonable amount

of time, you should revise it even if it works correctly. A “reasonable” amount of time

has to take into account that the markers run your code manually, and as such, wait

until it completes. They have to do it for many students.

18

