
Finite State Machines
Informatics 1 – Functional Programming: Tutorial 8

Due: The tutorial of week 10 (23–24 November)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Finite State Machines in Haskell

In the Computation & Logic part of the course, you’ve learned about finite state machines (FSMs),
both deterministic (D-FSMs) and nondeterministic (N-FSMs), and you’ve learned how the latter
can be transformed into the former.

Finite State Machines over arbitrary states

Here is the type we’ll use for FSMs whose states have type q, where q might be any type:

type FSM q = ([q], Alphabet, q, [q], [Transition q])

type Alphabet = [Char]

type Transition q = (q, Char, q)

In this assignment, a FSM is a five-tuple (u,a,s,f,t), consisting of: the universe of all states (u, a
list of states), the alphabet (a, a list of characters), the start state (s, a state), the final states (f, a
list of states), and the transitions (t, a list of transitions). Each transition (q,x,q’) has a source
state q, a symbol x, and a target state q’. (We use u rather than q for the universe of all states,
since we use q for individual states.)

Figure 1 shows two FSMs, one where the states are identified by integers, m1 :: FSM Int, and one
where the states are characters, m2 :: FSM Char.
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m2 :: FSM Char

m2 = ([’A’,’B’,’C’,’D’],

[’0’,’1’],

’B’,

[’A’,’B’,’C’],

[(’A’, ’0’, ’D’), (’A’, ’1’, ’B’),

(’B’, ’0’, ’A’), (’B’, ’1’, ’C’),

(’C’, ’0’, ’B’), (’C’, ’1’, ’D’),

(’D’, ’0’, ’D’), (’D’, ’1’, ’D’)])

Figure 1: Two finite state machines
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Exercises

1. Define five functions to retrieve the five components of a machine.

states :: FSM q -> [q]

alph :: FSM q -> Alphabet

start :: FSM q -> q

final :: FSM q -> [q]

trans :: FSM q -> [Transition q]

For example,

*Main> states m1

[0,1,2,3,4]

*Main> final m2

"ABC"

Hint: Use a pattern (u,a,s,f,t) as the argument of each function.

2. Write a function that given an FSM, a source state, and a symbol, returns a list of all states
that are the target of a transition for the given source state and symbol.

delta :: (Eq q) => FSM q -> q -> Char -> [q]

(The type declaration has a clause (Eq q) because you will need to use equality (==) to
compare states.) For example,

*Main> delta m1 0 ’a’

[1,2]

*Main> delta m2 ’B’ ’0’

"A"

3. Write a function that given an FSM and a string returns True when the FSM accepts the
string. The function should work with any FSM, deterministic or otherwise.

accepts :: (Eq q) => FSM q -> String -> Bool

For example,

*Main> accepts m1 "aaba"

True

*Main> accepts m2 "001"

False

Hint: Here is a skeleton of the function definition:

accepts :: (Eq q) => FSM q -> String -> Bool

accepts m xs = acceptsFrom m (start m) xs

acceptsFrom :: (Eq q) => FSM q -> q -> String -> Bool

acceptsFrom m q [] = q ‘elem‘ final m

acceptsFrom m q (x:xs) = ...

The function acceptsFrom returns true if and only if it accepts the given string starting in
the given state. For example, machine m1 in its start state accepts the string "aab".

*Main> acceptsFrom m1 0 "aab"

True

We previously saw that

*Main> delta m1 0 ’a’

[1,2]

Hence, from state 0, on seeing the symbol ’a’, the machine can move to either of state 1 or
state 2. We can recursively use acceptsFrom to determine if the remaining string "ab" is
accepted in either of these states.
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*Main> acceptsFrom m1 1 "ab"

False

*Main> acceptsFrom m1 2 "ab"

True

Since the remaining string is accepted in at least one of the subsequent states, the original
call succeeds.

Further hint: To fill in the ..., use a list comprehension that iterates over the states re-
turned by delta and uses acceptsFrom recursively to compute a list of boolean, then use an
appropriate function to combine the booleans.

Converting an N-FSM to a D-FSM

To convert an N-FSM into a D-FSM, we can use an technique called the “powerset construction.”
The machine is constructed as follows:

• The states of the D-FSM will be “superstates” of the original—each superstate is a set of
states of the original machine.

• The D-FSM will have a transition from superstate superq to superstate superq’ whenever
each state in superq’ is the target of some state in superq.

• The accepting (super)states of the D-FSM are those which contain some accepting state of the
original N-FSM.

• The initial (super)state is just the singleton set containing only the initial state of the original
N-FSM.

For instance, converting the first N-FSM in Figure 1 yields the D-FSM in Figure 2.

m1 :: FSM Int

dm1 :: FSM [Int]

Note how we take advantage of the fact that an FSM can have states of any type: the states of the
N-FSM are integers and the states of the corresponding D-FSM are lists of integers, so superstates
can be represented explicitly. (This is exactly why we made the type of an FSM parameterized by
the type of the state.) Our goal is to write a Haskell function that given m1 as input will produce
dm1 as output.

Exercises

4. We use lists to represent sets. So that it is easy to compare sets, we will always represent
sets by a canonical list that contains the states in order with no duplicates. Write a function
that converts a list of states to its canonical form.

canonical :: (Ord q) => [q] -> [q]

(The (Ord q) clause is in the type because you will need to assume there is some order on
the states.) For example,

*Main> canonical [1,2]

[1,2]

*Main> canonical [2,1]

[1,2]

*Main> canonical [1,2,1]

[1,2]

Hint. Use the library functions List.sort and List.nub.
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dm1 :: FSM [Int]

dm1 = ([[],[0],[1,2],[3],[3,4],[4]],

[’a’,’b’],

[0],

[[3,4],[4]],

[([], ’a’,[]),

([], ’b’,[]),

([0], ’a’,[1,2]),

([0], ’b’,[1,2]),

([1,2],’a’,[3]),

([1,2],’b’,[3,4]),

([3], ’a’,[]),

([3], ’b’,[4]),

([3,4],’a’,[4]),

([3,4],’b’,[4]),

([4], ’a’,[4]),

([4], ’b’,[4])])

Figure 2: D-FSM corresponding to an N-FSM
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5. Write a function that given an N-FSM, a source superstate, and a symbol, returns the target
superstate.

ddelta :: (Ord q) => FSM q -> [q] -> Char -> [q]

The target superstate is the set of states to which the machine can move, starting from one
of the source states, given the input symbol. For example,

*Main> ddelta m1 [0] ’b’

[1,2]

*Main> ddelta m1 [1,2] ’b’

[3,4]

*Main> ddelta m1 [3,4] ’b’

[4]

Important: The target superstate should be given in its canonical form.

Hint: The transition is computed by applying the delta function to each state in the given su-
perstate and then combining and canonicalizing the results. For example, ddelta m1 [0] ’b’

is computed from

*Main> delta m1 0 ’b’

[1,2]

and ddelta m1 [1,2] ’b’ is computed from

*Main> delta m1 1 ’b’

[4]

*Main> delta m1 2 ’b’

[3]

Further hint: Use a list comprehension and possibly the library function concat.

If the N-FSM has n states, then there are 2n possible superstates that might appear in the D-FSM,
but we need not consider all of these. We only care about the superstates that are reachable from
the start state. In the next two questions, we’ll compute which states are reachable.

Exercises

6. Write a function next that, given an N-FSM and a list of superstates, finds all of the super-
states that can be reached in a single transition from any of these and adds these reachable
superstates to the input list.

next :: (Ord q) => FSM q -> [[q]] -> [[q]]

Each superstate must be canonical, and there should be no duplicates in the list.

For example,

*Main> next m1 [[0]]

[[0],[1,2]]

*Main> next m1 [[0],[1,2]]

[[0],[1,2],[3],[3,4]]

*Main> next m1 [[0],[1,2],[3],[3,4]]

[[],[0],[1,2],[3],[3,4],[4]]

*Main> next m1 [[],[0],[1,2],[3],[3,4],[4]]

[[],[0],[1,2],[3],[3,4],[4]]

Hint: The value can be computed by applying ddelta to each superstate in the list and each
symbol in the alphabet. For example, the value

*Main> next m1 [[0],[1,2]]

[[0],[1,2],[3],[3,4]]

can be computed from the following calls
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*Main> ddelta m1 [0] ’a’

[1,2]

*Main> ddelta m1 [0] ’b’

[1,2]

*Main> ddelta m1 [1,2] ’a’

[3]

*Main> ddelta m1 [1,2] ’b’

[3,4]

Further hint: Use a comprehension with two generators to apply ddelta to each superstate
in the input list of superstates, and to each symbol in the alphabet; don’t forget to add the
input list of superstates to the result, and make sure that no superstate is added twice.

7. Write a function that given an N-FSM and a list of superstates adds to the list any other
superstates that can be reached by applying any number of transitions to any superstate in
the list.

reachable :: (Ord q) => FSM q -> [[q]] -> [[q]]

For example

*Main> reachable m1 [[0]]

[[0],[1,2],[3],[3,4],[],[4]]

Hint: The value of the call above is computed by the following sequence of calls to next.

*Main> next m1 [[0]]

[[0],[1,2]]

*Main> next m1 [[0],[1,2]]

[[0],[1,2],[3],[3,4]]

*Main> next m1 [[0],[1,2],[3],[3,4]]

[[],[0],[1,2],[3],[3,4],[4]]

*Main> next m1 [[],[0],[1,2],[3],[3,4],[4]]

[[],[0],[1,2],[3],[3,4],[4]]

In general, one repeatedly applies next to extend the list until there is no further change.

Notice that if we start from the list containing just the initial superstate, reachable will
return every superstate that is reachable in the equivalent D-FSM.

8. Write a function that takes a N-FSM and a list of superstates and returns a list of those that
are final (accepting) in the D-FSM.

dfinal :: (Ord q) => FSM q -> [[q]] -> [[q]]

Remember that a superstate is final if it contains a final state of the original N-FSM. For
example,

*Main> dfinal m1 [[],[0],[1,2],[3],[3,4],[4]]

[[3,4],[4]]

Hint: First write a function that given a superstate determines whether it contains a final
state, using the or function and a comprehension. Then use it to select all final superstates
from the list.

9. Write a function that takes a N-FSM and a list of superstates and returns a transition for
each superstate in the list and each symbol in the alphabet of the N-FSM.

dtrans :: (Ord q) => FSM q -> [[q]] -> [Transition [q]]

For example,

*Main> dtrans m1 [[],[0],[1,2],[3],[3,4],[4]]

[([],’a’,[]),

([],’b’,[]),

([0],’a’,[1,2]),
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([0],’b’,[1,2]),

([1,2],’a’,[3]),

([1,2],’b’,[3,4]),

([3],’a’,[]),

([3],’b’,[4]),

([3,4],’a’,[4]),

([3,4],’b’,[4]),

([4],’a’,[4]),

([4],’b’,[4])]

Hint: The target of each transition can be computed using ddelta. For example,

*Main> ddelta m1 [0] ’a’

[1,2]

*Main> ddelta m1 [0] ’b’

[1,2]

*Main> ddelta m1 [1,2] ’a’

[3]

*Main> ddelta m1 [1,2] ’b’

[3,4]

Further hint. Use a comprehension with two generators, one iterating over the list of super-
states and one iterating over the alphabet.

10. Write a function that takes an N-FSM and returns the corresponding D-FSM.

deterministic :: (Ord q) => FSM q -> FSM [q]

For example, deterministic m1 returns dm1.

Hint: Use reachable to compute the set of states, use the same alphabet as the given N-
FSM, use as the start state the superstate containing only the start state of the N-FSM, use
dfinal to compute the final states, and dtrans to compute the transitions.

Optional Material

In this section you are asked to implement a FSM which checks whether a string matches a regular
expression. There are some quickCheck properties already defined to help you along. For all of these
questions, we use [’a’..’z’] as the alphabet.

Exercises

11. (a) Write a function charFSM :: Char -> FSM Int that given a character returns an FSM
that accepts a single instance of that character.

(b) Write a function emptyFSM :: FSM Int that returns an FSM that accepts no strings.

12. (a) Write a function intFSM :: FSM a -> FSM Int that translates a FSM q (D-FSM or
N-FSM) into an equivalent FSM Int which has a state space [0..n].

(b) The concatenation of two FSMd A and B with the same alphabet is an automaton which
accepts an input word if A accepts some prefix of the input word and B accepts the rest of
the word. Implement a function concatFSM :: FSM q -> FSM q’ -> FSM Int which
returns the concatenation of the input FSMs. You may wish to write a concatenation
function on FSM Int first and then use your previous function to translate the input
automata into FSM Int. Your function should work on both D-FSMs and N-FSMs.

13. Write a function stringFSM :: String -> FSM Int that returns a FSM that accepts exactly
the input string.

14. Say that a FSM is complete if there is a transition from every state for each character of the
alphabet.
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(a) Write a function completeFSM :: FSM a -> FSM (Maybe a) that takes a FSM and
returns an equivalent complete FSM.

Hint: Use Nothing to add the missing transitions.

(b) The union of two FSMs A and B is a FSM which accepts a word if either A or B accepts it.
Write a function unionFSM :: FSM q -> FSM q -> FSM Int which returns the union
of the input FSMs. Your function should work on both D-FSMs and N-FSMs. Use
completeFSM and intFSM.

Hint: A state of the union FSM consists of a pair (q,q’) where q is a state of A and q’ is
a state of B. A transition in the union FSM is a triple ((q_0,q_1),char,(q_0’,q_1’))

such that (q_0,char,q_0’) and (q_1,char,q_1’) are transitions in A and B respec-
tively.

15. The Kleene star closure of a FSM A accepts the empty word and any input word which
consists of a concatenation of words accepted by A.

Write a function star :: FSM q -> FSM q which returns the Kleene star closure of the input
automaton. Your function should work on both D-FSMs and N-FSMs.

Try out your code by writing some regular expressions of your own and testing them on sample
strings.

In the last part of this tutorial, you will implement two additional operations, complement and
intersection.

Exercises

16. Write a function complement :: FSM q -> FSM Int which returns a D-FSM which accepts
an input if and only if the input D-FSM rejects it. Use the provided quickCheck property to
test your function.

17. The intersection of two FSM A and B is a FSM which accepts a word if and only if both A

and B accepts it.

Implement a function intersectFSM :: FSM q -> FSM q -> FSM (q,q) which returns the
intersection of the input FSMs. Your function should work on both D-FSMs and N-FSMs.

Use the quickCheck properties at the bottom of tutorial8.hs to write your own tests.
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