
Screen-scraping
Informatics 1 – Functional Programming: Tutorial 4

Due: The tutorial of week 6 (26-27 Oct.)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Basic Screen Scraper

A “screen scraper” is a tool used to extract data from web sites, by looking at their source. In this
exercise, you will write one of the most hated screen scrapers: one that extracts email addresses.
Why is it hated? Because people use screen scrapers like that to collect email addresses to send
spam to. However, in this exercise we will show you a useful purpose of the email screenscraper!

We are going to be extracting names and emails from web pages written in HTML (HyperText
Markup Language). For instance, from the following HTML:

<html>

<head>

<title>FP: Tutorial 4</title>

</head>

<body>

<h1>A Boring test page</h1>

<h2>for tutorial 4</h2>

FP Website

Lecturer: Don Sannella

TA: Stefan Fehrenbach

</body>

</html>

We are going to extract a list of the “<a>” elements, which contain URLs (Uniform Resource
Locators). If a URL begins with http: it is an address of a web page; if it begins with mailto: the
rest of it is an email address. For the document above, here is the list of links (each one contains
some extra data at the end, which is an artifact of the technique we use):

["http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/\">FP Website
Lecturer: "

1

,"mailto:dts@inf.ed.ac.uk\">\Don Sannella
TA: "

,"mailto:stefan.fehrenbach@ed.ac.uk\">Stefan Fehrenbach</body></html>"]

From this list, we will in turn extract a list of names and email addresses:

[("Don Sannella","dts@inf.ed.ac.uk"),

("Stefan Fehrenbach","stefan.fehrenbach@ed.ac.uk")]

The file tutorial4.hs contains the test html-document and the lists above: testHTML, testLinks,
and testAddrBook.

Notice that the type of testLinks is [Link] and the type of testAddrBook is [(Name,Email)]. In
other words: testLinks is a list of Links, and testAddrBook is a list of tuples containing both a
Name: and an Email. These appear to be new types which we have not encountered before, but
if you look in the file tutorial4.hs you will find the following type expressions:

type Link = String

type Name = String

type Email = String

type HTML = String

type URL = String

These type declarations simply define aliases for the very familiar type String. Aliases are not
strictly necessary, but they make your program more readable.

Note: If you want to know more about HTML, have a look at: http://www.w3schools.com/html/.

Exercises

1. Write a function sameString :: String -> String -> Bool that returns True when two
strings are the same, but ignores whether a letter is in upper- or lowercase. For example:

*Main> sameString "HeLLo" "HElLo"

True

*Main> sameString "Hello" "Hi there"

False

Warning: Unintuitively, the mapping between upper and lower case characters is not one-to-
one. For example, the greek letter µ and the micro sign map to the same upper case letter.
What does your code do on sameString "\181" "\956"? In this case either behaviour is
acceptable, as long as the tests don’t fail on input containing these characters!

2. Write a function prefix :: String -> String -> Bool that checks whether the first string
is a prefix of the second, like the library function isPrefixOf that you used before, but this
time it should be case-insensitive.

*Main> prefix "bc" "abCDE"

False

*Main> prefix "Bc" "bCDE"

True

Check your function using the predefined test properties prop_prefix_pos and prop_prefix_neg.
Why is prop_prefix_pos not sufficient to test your code? Think about faulty code that would
pass this test.

3. (a) Write the function contains as in tutorial 2, but case-insensitive. For example:

2

*Main> contains "abcde" "bd"

False

*Main> contains "abCDe" "Bc"

True

(b) Write a test property prop_contains :: String -> Int -> Int -> Bool to test your
contains function. You can take inspiration from prop_prefix_pos.

4. (a) Write a case-insensitive function takeUntil :: String -> String -> String that re-
turns the contents of the second string before the first occurrence of the first string. If
the second string does not contain the first as a substring, return the whole string. E.g.:

*Main> takeUntil "cd" "abcdef"

"ab"

(b) Write a case-insensitive function dropUntil :: String -> String -> String that re-
turns the contents of the second string after the first occurrence of the first string. If
the second string does not contain the first as a substring, return the empty string. E.g.:

*Main> dropUntil "cd" "abcdef"

"ef"

5. (a) Write a case-insensitive function split :: String -> String -> [String] that di-
vides the second argument at every occurrence of the first, returning the results as a
list. The result should not include the separator. For example:

*Main> split "," "comma,separated,string"

["comma","separated","string"]

*Main> split "the" "to thE WINNER the spoils!"

["to "," WINNER "," spoils!"]

*Main> split "end" "this is not the end"

["this is not the ",""]

Your function should return an error if the first argument, the separator string, is an
empty list. You will find your functions takeUntil and dropUntil useful here.

(b) Write a function reconstruct :: String -> [String] -> String that reverses the
result of split. That is, it should take a string and a list of strings, and put the list of
strings back together into one string, with the first string everywhere in between (but
not at the start or at the end).

(c) Look at the predefined test function prop_split and explain what it does. Use it to
test your split function.

6. Use your function split to write a function linksFromHTML :: HTML -> [Link]. You can
assume that a link begins with the string <a href=". Don’t include this separator in the
results, and don’t include the stuff in the HTML that precedes the first link. Example:

*Main> linksFromHTML testHTML

["http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/\">FP Website
Lecturer: ",

"mailto:dts@inf.ed.ac.uk\">\Don Sannella
TA: ",

"mailto:stefan.fehrenbach@ed.ac.uk\">Stefan Fehrenbach</body></html>"]

Note: to include the character " in a string, precede it with a backslash (\), as \".

Use testLinksFromHTML to test your function on the given sample data. Note that this test
does not require QuickCheck, since it does not depend on randomly generated input.

7. Write a function takeEmails :: [Link] -> [Link] which takes just the email addresses
from a list of links given by linksFromHTML. Example:

3

*Main> takeEmails testLinks

["mailto:dts@inf.ed.ac.uk\">\Don Sannella
TA: ",

"mailto:stefan.fehrenbach@ed.ac.uk\">Stefan Fehrenbach</body></html>"]

8. Write a function link2pair :: Link -> (Name, Email) which converts a mailto link into
a pair consisting of a name and the corresponding email address. The name is the part of the
link between the and tags; the email address is the part in the quotes
after mailto:. Add an appropriate error message if the link isn’t a mailto: link. Example:

*Main> link2pair "mailto:john@smith.co.uk\">John"

("John","john@smith.co.uk")

9. Combine your functions linksFromHTML, takeEmails and link2pair to write a function
emailsFromHTML :: HTML -> [(Name, Email)] that extracts all mailto links from a web-
page, turns them into (Name, Email) pairs, and then removes duplicates from that list.
Example:

*Main> emailsFromHTML testHTML

[("Don Sannella","dts@inf.ed.ac.uk"),

("Stefan Fehrenbach","stefan.fehrenbach@ed.ac.uk")]

Note: the library function nub :: [a] -> [a] removes duplicates from a list.

You can test your function with testEmailsFromHTML.

Pulling in live URLs

In tutorial4.hs a test URL is predefined, testURL. Since it is just a string, you can ask GHCi to
display it. Do this, and copy-paste the link into your web browser to see what page it refers to. To
see the HTML of the page right-click and select ‘view page source’, or a similar option depending
on your browser.

*Main> testURL

"http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/testpage.html"

The function emailsFromURL, which is already defined in tutorial4.hs, extracts email addresses
from a URL using your very own emailsFromHTML. Test your function emailsFromHTML by testing
it on real URLs of your choice.

As you will have seen, emailsFromURL sometimes produces a rather long list of names and email
addresses. Sometimes you have a vague idea of who it is you are looking for and in that case, you
do not want to go through the entire list of names one-by-one. Over the next few exercises you will
be implementing a function emailsByNameFromURL in order to find the email address of a person
whose name you know.

Exercises

10. Write a function findEmail :: Name -> [(Name,Email)] -> [(Name,Email)] which given
(part of) a name and a list of (Name,Email) pairs, returns a list of those pairs which match
the name. Example:

*Main> findEmail "Stefan" testAddrBook

[("Stefan Fehrenbach","stefan.fehrenbach@ed.ac.uk")]

*Main> findEmail "San" testAddrBook

[("Don Sannella","dts@inf.ed.ac.uk")]

*Main> findEmail "Fred" testAddrBook

[]

4

11. Define the function emailsByNameFromHTML :: HTML -> Name -> [(Name, Email)]. This
function should take an HTML string and (part of) a name, and return all (Name,Email)
pairs which match the name.

*Main> emailsByNameFromHTML testHTML "Stefan"

[("Stefan Fehrenbach","stefan.fehrenbach@ed.ac.uk")]

The function emailsByNameFromURL, which is already defined in tutorial4.hs, uses your very own
emailsByNameFromHTML function to extract the email address of a certain person from a live URL.
Maybe you can try it on your own webpage, if you have one.

5

Optional Material

Searching for strings

In the previous section you have written functions to find email addresses which belong to people
whose name contains the input string. You will now write code to select names which match more
elaborate criteria.

Exercises

12. Write a function hasInitials :: String -> Name -> Bool which returns true if the ini-
tials of the second argument are exactly the first argument.

*Main> hasInitials "DS" "Don Sannella"

True

*Main> hasInitials "SF" "Stefan Fehrenbach"

False

13. Write a function emailsByMatchFromHTML :: (Name -> Bool) -> HTML -> [(Name,Email)] .
It should find all the emails that belong to people whose name match the criterion set out
by the first argument. Note the type of the first argument of this function (the brackets are
important!).

Then write a funciton emailsByInitialsFromHTML :: String -> HTML -> [(Name,Email)]

which finds emails of people whose initials match the first argument.

14. Write a function myCriteria :: Name -> Bool which tests whether a name matches a cri-
terion of your choice. If you are stuck for ideas, match names of which the initials contain a
reference string, in the right order but not necessarily in consecutive positions. For example
“Don T. Sannella” matches “DS”. You may want your function to take more than one argu-
ment, in which case you can adjust its type. Use this function and the previous ones to write
emailsByMyCriteriaFromHTML :: HTML -> [(Name,Email)] which finds emails belonging
to people whose names match your criterion.

Pretty printing

We often want to look at the output of a function (say emailsFromHTML) in a slightly nicer way.
This is called pretty printing. In emailsFromURL the output of emailsFromHTML is currently being
pretty printed by a function called ppAddrBook. In this exercise, you will be rewriting that function
to make emailsFromURL produce a different output.

You will need two pieces of information to complete this exercise. First of all, you may assume
that if a name has more than two words, the first name is the first word and the last name is the
remaining words1. Second, all of the names should line up and all of the email addresses should line
up—no matter how long the names are. For example:

Fehrenbach, Stefan stefan.fehrenbach@ed.ac.uk

Sannella, Don dts@inf.ed.ac.uk

In order to print a block of text like this to the screen, we can’t simply return it from a function,
because GHCi will faithfully escape all the funny characters in the string, such as newlines. The
function putStr takes a string and prints it to the screen, which involves turning newline characters
'\n' into actual new lines. For example:

*Main> putStr "First Line\nSecond Line\nThird Line\n"

First Line

1Note that this is the way the British classification system works, but that it does not provide a correct classification
for many non-English names.

6

Second Line

Third Line

Exercises

15. Rewrite the function ppAddrBook :: [(Name,Email)] -> String so that it lines up the
names and email addresses in two separate columns. For example:

*Main> putStr (ppAddrBook testAddrBook)

Sannella, Don dts@inf.ed.ac.uk

Fehrenbach, Stefan stefan.fehrenbach@ed.ac.uk

You will find, in general, that some names are listed in “surname, first name” format and
some are given in the regular “first name surname” format. Make sure your function can
cope with both formats.

7

