Getting Started

Informatics 1 — Functional Programming: Lab Week Tutorial

Burroughes, Heijltjes, Scott, Wadler, Banks, Sannella, Lehtinen, Fehrenbach

Due: Friday 29th September (5pm)

Welcome

Welcome to your first functional programming exercise! This document will explain how to get
started writing Haskell. You will be shown how to use the text editor Atom, which you have been
introduced to last week, with the interactive Haskell interpreter GHCi', and the “submit” command
used to hand in your electronic coursework.

The exercise consists of four parts:

1. The system In the first part you will set up the system and get to know the basic tools for
programming.

2. Getting started The second part is a simple exercise where you will write some arithmetic
functions in Haskell.

3. Submitting your work In the third part you will be shown how to submit your solutions
to the Haskell exercises.

4. Chess Part four is an exercise where you will compose and manipulate images of chess pieces.

It is important to complete all four parts and start getting used to the computer labs and DICE
machines, since the exams for the course, which are programming tests, will be held here. In
particular, part three of this exercise teaches how electronic work, including the exam to this course,
must be submitted. Therefore:

Note: Completing part 3, submitting your work, is a compulsory requirement.

L*GHC’ stands for ‘Glasgow Haskell Compiler’ or “The Glorious Glasgow Haskell Compilation System

1 The system

We will be using Atom. This requires some minor configuration effort on your part. Please beware
that the default installation script will overwrite any existing Atom configuration. You should make
a backup if you have used and configured Atom before.

Exercises
1. Follow the instructions for setting up Atom: https://github.com/livecodealex/haskell-atom/
blob/master/Instructions/howto_dice.md

We will begin in the Haskell REPL (read-eval-print-loop). This interactive environment is usually
provided by GHCI, the interactive Haskell compiler/interpreter. Atom has a REPL built-in.

Exercises
2. Start the Haskell REPL from inside Atom, via the menu point “Haskell IDE”, then “Open
REPL”. If you are asked for a “builder” choose “cabal”. A tab should open that lets you
evaluate Haskell expressions. We will let it do some simple arithmetic first.
(a) Type “3 + 4” at the prompt. What does it say?
(b) Try “3 + 4 * 5” and “(3 + 4) * 5”. Does arithmetic in Haskell work as expected?

Note, you submit an exression by pressing shift + enter.

The interactive environment can handle any Haskell expression, not just arithmetic:

Prelude> length "This is a string"

16

Prelude> reverse "This is not a palindrome"
"emordnilap a ton si sihT"

https://github.com/livecodealex/haskell-atom/blob/master/Instructions/howto_dice.md
https://github.com/livecodealex/haskell-atom/blob/master/Instructions/howto_dice.md

2 Getting started

Download the file Labweek.zip from the course website:
http://www.inf.ed.ac.uk/teaching/courses/infl/fp/#tutorials

and unpack it. It should contain a folder which in turn contains the files labweekexercise.hs,
labweekchess.hs and PicturesSVG.hs.

Use Atom to open the folder (File — Open Folder...)

Open the file labweekexercise.hs in Atom. Below the introductory comments and the phrase
import Test.QuickCheck, which loads the QuickCheck library that we will use later, you should
see the following function definition:

double :: Int -> Int
double x = x + x

Exercises

3. (a) Part of the definition (the line double x = x + x) is incorrectly indented: it should be
vertically aligned with its type signature (the line above). Edit this line to correct the
indentation.

(b) Reload the corrected file by pressing the button with “i” in two half-circle arrows, the
left-most at the bottom of the REPL tab. You can also turn on automatic reloading on
changes by toggling the second button.

(c¢) Load the file 1abweekexercise.hs into the REPL. Use the REPL to display

i. the value of double 21
ii. the type of double
iii. the type of double 21

(d) What happens if you ask the REPL to evaluate double "three"?

(e) Complete the definition of square :: Int -> Int in labweekexercise.hs so it com-
putes the square of a number (you should replace the word “undefined”). Reload the
file and test your definition.

Pythagorean Triples

Pythagoras was a Greek mystic who lived from around 570 to 490 BC. He is known to generations of
schoolchildren as the discoverer of the relationship between the sides of a right-angled triangle. There
is little evidence, however, that Pythagoras was a geometer at all. Early references to Pythagoras
make no mention of his putative mathematical achievements, but refer instead to his pronouncements
on dietary matters (he prohibited his followers from eating beans) or his less cerebral achievements
such as biting a snake to death.

Whether or not Pythagoras had anything to do with the discovery of the theorem that bears his name,
it was evidently known in antiquity. A stone tablet from Mesopotamia which predates Pythagoras
by 1000 years, “Plimpton 322", appears to contain part of a list of “Pythagorean triples”: positive
integers corresponding to the lengths of the sides of a right-angled triangle. Back with the Greeks,
Euclid (325 — 265BC) described a method for generating Pythagorean triples in his famous treatise
The Elements.

In this part of the exercise we’ll be taking a more modern approach to the ancient problem, using
Haskell to generate and verify Pythagorean triples.

First, a formal definition: a Pythagorean triple is a set of three integers (a, b, ¢) which satisfy the
equation a?+b? = c?. For example, (3,4, 5) is a Pythagorean triple, since 32+42 = 9+16 = 25 = 52,

Exercises

4. Write a function isTriple that tests for Pythagorean triples. You don’t need to worry about
triples with sides of negative or zero length.

(a) Find the skeleton declaration of isTriple :: Int -> Int -> Int -> Bool and re-
place undefined with a suitable definition (use ‘==" to compare two values).

(b) Load the file into the REPL. Test your function on some suitable input numbers. Make
sure that it returns True for numbers that satisfy the equation (such as 3, 4 and 5) and
False for numbers that don’t (such as 3, 4 and 6).

Main> isTriple 3 4 5
True
Main> isTriple 3 4 6
False

Next we’ll create some triples automatically. One simple formula for finding Pythagorean triples is
as follows: (22 —y?, 2yx, 22 +42) is a Pythagorean triple for all positive integers z and y with = > y.
The requirements that and y are positive and that > y ensure that the sides of the triangle are
positive; for this exercise, we will forget about that.

Exercises

5. Write functions legl, leg2 and hyp that generate the components of Pythagorean triples
using the above formulas.

(a) Using the formulas above, add suitable definitions of

legl :: Int -> Int -> Int
leg2 :: Int -> Int -> Int
hyp :: Int -> Int -> Int

to your labweekexercise.hs and reload the file.

(b) Test your functions on suitable input numbers. Verify that the generated triples are
valid.

Main> legl 5 4

9

Main> leg2 5 4

40

Main> hyp 5 4

41

Main> isTriple 9 40 41
True

QuickCheck

Now we will use QuickCheck to test whether our combination of legl, leg2, and hyp does indeed
create a Pythagorean triple. QuickCheck can try your function out on large amounts of random
data, which it creates itself. But before we start using it, we will try to get a flavour of what it does
by testing your functions manually.

Exercises

6. The function prop_triple—the name starts with prop(erty) to indicate that it is for use
with QuickCheck—uses the functions legl, leg2, hyp to generate a Pythagorean triple, and
uses the function isTriple to check whether it is indeed a Pythagorean triple.

(a) How does this function work? What kind of input does it expect, and what kind of
output does it generate?

(b) Test this function on at least 3 sets of suitable inputs. Think: what results do you
expect for various inputs?

(¢) Type the following at the REPL-prompt (mind the capital ‘C’):
Main> quickCheck prop_triple

The previous command makes QuickCheck perform a hundred random tests with your test function.
If it says:

0K, passed 100 tests.
then all is well. If, on the other hand, QuickCheck responds with an answer like this:

Falsifiable, after O tests:
5
6

then your function failed when QuickCheck tried to evaluate it with the values 5 and 6 as arguments—
when testing manually, that would be:

Main> prop_triple 5 6
False

If this happens, at least one of your previous functions isTriple, legl, leg2 and hyp contains a
mistake, which you should find and correct.

When you’re done

If you have completed the exercises and written out all of the functions in labweekexercise.hs,
add your name and matriculation number to comments at the start of the file and continue to the
next section, which will demonstrate how to submit your solutions for marking.

Note: If you are running out of time (the deadline for submission is Friday, 5pm), you can submit
the incomplete exercise, but first make sure that the REPL can load it without errors. To do this,
turn the offending code into harmless commentary by putting two dashes (--) in front of it.

3 Submitting your work

This section demonstrates the “submit” command, used to submit your work electronically. Most
importantly, you will have to use it to submit your exams. In general you will not be asked to submit
your tutorial exercises, so so use this opportunity to see how it works. To make sure everyone is
ready for the exams, completing this part of the exercise is compulsory.

Once you have completed working on the Haskell file? labweekexercise.hs, you need to submit it
with the submit command. For this exercise, you should use the command as follows:

submit infl-fp 1lab labweekexercise.hs

The meaning of the arguments is as follows:

inf1-fp: the code for the course, informatics 1 — functional programming;
lab: the code for the current exercise;

Each exercise has an individual code for submission, which you will be given when you are asked to
submit. After you type in the command, the following dialogue will pop up:

Submit the following for exercise lab, module infl-fp of the infl course.
/afs/inf.ed.ac.uk/user/si4..... /Desktop/labweekexercise.hs
Is this correct (y/n: n aborts)?

The path to the file will probably differ, but it should reflect the location of the file you want to
submit—check this if you are unsure, for instance by typing “pwd” at a shell prompt. Note that you
might also see the short version of the path: /home/Desktop/labweekexercise.hs. If all is correct
you can answer with “y”, and you will see:

Submission of the following for exercise lab, module infl-fp
of the infl course succeeded:
/afs/inf.ed.ac.uk/user/s14..... /Desktop/labweekexercise.hs

If you get one of the codes for the year, course or for the exercise wrong, you will instead see
something like the following:

submit 3.4.2-1 usage:
to submit an exercise:
submit <course> <exercise> <filel> <file2>...
where <exercise> is the short name of an exercise and <file> can
be a regular file or a directory.

You need to specify which exercise you are submitting.
The exercise name should be one of:
lab
for course inf-fp.

SUBMISSION DID NOT HAPPEN!

Note that submit will always tell you if the submission completes or fails — you will see either
“SUBMISSION DID NOT HAPPEN!” or “Submission of ... succeeded”.

Exercises

7. Submit your file labweekexercise.hs now.

When you have successfully submitted a file, you should receive a confirmation email from the submit
system.

2If you did not complete the exercises, you can submit the incomplete file—it is more important to submit than
to complete the exercises.

Getting more information

If you just type the command “submit” you will be given a list of the valid options (in the output
below, long lines are truncated):

submit 3.4.2-1 usage:
to submit an exercise:
submit <course> <exercise> <filel> <file2>...
where <exercise> is the short name of an exercise and <file> can
be a regular file or a directory.

You need to specify which course you are submitting the exercise for.

Choose from one of these:

testl tts tspl tdd tcm st sp slip seoc selp sdp sapm rtn rss rlsc rl rc gsx
proj ppls pon pmr pm pi pa os nr nlu nip nc mt mpp2 mlpr mipl mi mdi masws
1si 1p ivr it irr irp iqc inf2d inf2c-se inf2c-cs inf2b inf2a infl-op infl-fp
infl-da infl-cl infl-cg ijp iar iaml hci fnlp fmt2 fmtl ext exc es ds dmr
dmmr dme diss dip die dbs dapa ct cslp cs cp copt comn coc cnv cn cmcC cg

cdil cd ccs ccn cav car ca bio2 biol av asr ar anlp alel ailp agta ads adbs
abs

SUBMISSION DID NOT HAPPEN!

Chess

In this final part of the tutorial we will get more familiar with Haskell, by drawing pictures of chess
pieces on a board.

First, open the file showPic.html in your web-browser. Next, open the file labweekchess.hs in
Atom. Load it into the REPL and type this at the prompt:

Main> render knight

Now refresh the webpage, and a picture of a white knight chess piece should appear:

Note: When you draw another image, you will need to refresh the webpage to view it.

The tutorial file 1abweekchess.hs is able to draw pictures using the module PicturesSVG, contained
in the file PicturesSVG.hs, by means of the line:

import PicturesSVG

Note: If you get an error that GHC can’t find a module, see if the problem is solved by putting
your files in the same directory (folder).

All in all the PicturesSVG module includes all chess pieces and white and grey squares to create
a chessboard, and some functions to manipulate the images. The following tables show the basic
pictures:

Chess pieces Board squares
bishop A bishop g blackSquare A black (grey) square® .
king A king % whiteSquare A white square
knight A knight @
pawn A pawn 8 * The black square is grey so that you can see the
queen A queen @ black pieces on it.

rook A rook z

All the basic pictures above have the type Picture. Below are the functions for arranging pictures:

flipV reflection in the vertical axis
flipH reflection in the horizontal axis
invert change black to white and vice versa

over place one picture onto another
beside place one picture next to another
above place one picture above another

repeatH place several copies of a picture side by side
repeatV stack several copies of a picture vertically

Exercises

8. Ask the REPL to show the types of these functions.

Try applying the functions in various combinations to learn how they behave (for instance: what hap-
pens if you put pictures of different height side by side). Just as with the simple picture knight, you
can see the modified pictures by using the render function. You’ll probably need some parentheses,
for example:

Main> render (beside knight (f1ipV knight))

Exercises

9. Use the knight picture and the above transformation functions to create the following two
pictures:

Feel free to use convenient intermediate pictures.

The fourth function, over, can place a piece on a square, like this:

Main> render (over rook blackSquare)

You can use over to put any picture on top of another, but the result looks best if you simply put
pieces on squares.

The full chessboard

Next, we will build a picture of a fully populated chessboard. The functions repeatH and repeatV
create a row or column of identical pictures, in the following way (try this out):

Main> render (repeatH 4 queen)

Notes:

e When a problem says “... using the function (or picture) foo,” you must use the function foo.
A solution that does not use that function will not be accepted, but of course you can use
other functions as well.

e Unless an exercise says you can’t, you are free to define intermediate functions, or pictures in
this case, if that makes it easier to define the solution to an exercise.
Exercises

10. (a) Using the repeatH function, create a picture emptyRow representing one of the empty
rows of a chessboard (this one starts with a white square).

(b) Using the picture emptyRow from the last question, create a picture otherEmptyRow,
representing the other empty rows of a chessboard (starting with a grey square).

(¢) Using the previous two pictures, make a picture middleBoard representing the four
empty rows in the middle of a chessboard:

(d) Create a picture whiteRow representing the bottom row of (white) pieces on a chess-
board, each on their proper squares. Also create a picture blackRow for the top row of
(black) pieces. You can use intermediate pictures, but try to keep your knights pointing
left. The pieces should look like this:

(e) Using the pictures you defined in your answers to the questions above, create a fully-
populated board (populatedBoard). It will be helpful to make pictures blackPawns
and whitePawns for the two rows of pawns. The result should look like this:

10

Functions

In the previous section we have used the built-in functions to arrange ever larger pictures. Now we
will use them to construct more complicated functions. First, take a look at the function twoBeside:

twoBeside :: Picture -> Picture
twoBeside x = beside x (invert x)

It takes a picture and places it beside an inverted copy of itself:

29

Main> render (twoBeside (over king blackSquare))

11. (a) Write a function twoAbove that places a picture above an inverted copy of itself:

Main> render (twoBeside bishop)

Exercises

(b) Write a function fourPictures that puts four pictures together as shown below. You
may use the functions twoBeside and twoAbove.

i

11

	The system
	Getting started
	Submitting your work

