
Informatics 1
Functional Programming Lecture 11

Data Representation

Don Sannella
University of Edinburgh

Part I

Complexity

dts
Typewritten Text
Premature optimisation is the root of all evil. Get it right, and make it clear.
But sometimes you do need things to run fast, or at least not really really slowly.
Especially when processing LOTS of data - millions or billions of items.
This lecture is about data abstraction, a way of separating getting things right from making them run fast.
First, let's look at the difference between fast programs and slow programs, concentrating on what happens for BIG inputs.
How long does it take to check if an item is in a list of n elements? Depends on how fast the computer is, and how big n is.
Best case: 1 step, because it's at the front of the list.
Worst case: n steps, because it's at the end of the list, or not in the list.
Average case: n/2 steps if it's there, n steps if not.

t = n vs t = n2

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8

8.8

9.6

10.4

dts
Typewritten Text
size

dts
Typewritten Text
time

dts
Typewritten Text
Here's what run time of n steps looks like ("linear") and how it compares with n^2 steps ("quadratic").
So n is faster than n^2 for n>1.

dts
Typewritten Text
linear

dts
Typewritten Text
quadratic

t = 2n vs t = 0.5n2

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8

8.8

9.6

10.4

dts
Typewritten Text
But what about a really fast quadratic algorithm (say 0.5n^2)
versus a really slow linear algorithm (say 2n)?

dts
Typewritten Text
n is better for n>4: 2*4 = 0.5*4^2 = 8.
cn is always better than dn^2, for any c,d, for big enough n. For small n, who cares?
cn = dn^2 for n >= c/d.
That's why we care about linear versus quadratic and not about c and d.

dts
Typewritten Text
linear

dts
Typewritten Text
quadratic

O(n) vs O(n2)

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8

8.8

9.6

10.4

dts
Typewritten Text
O-notation captures the idea that multiplicative and additive factors don't matter.
f is O(n) means f(x) <= cx for x>m for some c,m
f is O(n^n) means f(x) <= cx^2 for x>m for some c,m
etc.

dts
Typewritten Text
You can show that O(n^2 + n) = O(n^2), O(n^3 + n^2 + n) = O(n^3), O(n+b) = O(n) etc.
You only care about the degree of the polynomial - that's why we say linear, quadratic etc.

O(n), O(n2), O(n3), O(n4)

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8

8.8

9.6

10.4

dts
Typewritten Text
O(n^4) is usually too slow. O(n^3) is maybe tolerable. O(n^2) is okay. O(n) is great.
For really big data sets, you need O(n) or better.

dts
Typewritten Text
n^4

dts
Typewritten Text
n^3

dts
Typewritten Text
n^2

dts
Typewritten Text
n

O(log n), O(n), O(n log n), O(2n)

0 8 16 24 32 40 48 56 64 72 80 88 96

8

16

24

32

40

48

56

64

72

80

88

96

dts
Typewritten Text
2^n
exponential

dts
Typewritten Text
n log n

dts
Typewritten Text
n

dts
Typewritten Text
log n

dts
Typewritten Text
Logarithms arise naturally in "divide and conquer" algorithms.
Exponential (2^n) is really bad - intractable. E.g. building truth tables - add one variable, table doubles in size.
Logarithmic (log n) is really great - 1000->1000000 takes twice as long.
Many sorting algorithms are n log n.

Part II

Sets as lists

dts
Typewritten Text
We're now going to look at several different ways of implementing sets, and compare them using O-notation.
The easiest way is using a list, so we'll start with that.

List.hs (1)
module List

(Set,empty,insert,set,element,equal,check) where
import Test.QuickCheck

type Set a = [a]

empty :: Set a
empty = []

insert :: a -> Set a -> Set a
insert x xs = x:xs

set :: [a] -> Set a
set xs = xs

dts
Typewritten Text
A module gives a name to a program unit, saying what it exports (list of names)
and what it needs to do its work (imports).

dts
Typewritten Text
We're going to look at a series of modules that all export
the same names, but have different implementations of data.
Here, sets are represented as lists.

dts
Typewritten Text
Empty set is empty list.

dts
Typewritten Text
Inserting an element is just : (cons) - adding new element
to the beginning of the list.
Could instead add it in the middle or end - doesn't matter. O(1)

dts
Typewritten Text
Convert a list into a set: don't need to do anything,
it is a set already. O(1)

List.hs (2)
element :: Eq a => a -> Set a -> Bool
x ‘element‘ xs = x ‘elem‘ xs

equal :: Eq a => Set a -> Set a -> Bool
xs ‘equal‘ ys = xs ‘subset‘ ys && ys ‘subset‘ xs

where
xs ‘subset‘ ys = and [x ‘elem‘ ys | x <- xs]

dts
Typewritten Text

dts
Typewritten Text
To test if an item is in a set, just use
built-in elem function on lists. Looks
through list from the beginning, stopping
when it finds item or runs out of elements.
So O(n).

dts
Typewritten Text
To check equality, we can't just compare the underlying lists for equality:
 insert 1 (insert 2 empty) = [1,2]
 insert 2 (insert 1 empty) = [2,1]
 insert 1 (insert 2 (insert 1 empty)) = [1,2,1]
but we want to regard these as the same set - order of insertion isn't supposed to matter, for sets.
So we define subset (xs `subset` ys if each element in xs is also in ys) and then xs and ys have the
same elements if xs `subset` ys and vice versa.

dts
Typewritten Text
Equality is O(n^2): for every of n elements in xs, need to check if it is in ys - which is O(n) - and vice versa.
(Actually O(nm), if xs has length n and ys has length m.)

List.hs (3)
prop_element :: [Int] -> Bool
prop_element ys =

and [x ‘element‘ s == odd x | x <- ys]
where
s = set [x | x <- ys, odd x]

check =
quickCheck prop_element

-- Prelude List> check
-- +++ OK, passed 100 tests.

Part III

Sets as ordered lists

dts
Typewritten Text
A different way to represent a set is as an ordered list without duplicates. Then
 insert 1 (insert 2 empty) = [1,2]
 insert 2 (insert 1 empty) = [1,2]
 insert 1 (insert 2 (insert 1 empty)) = [1,2]
So equality checking should be easier.

OrderedList.hs (1)
module OrderedList

(Set,empty,insert,set,element,equal,check) where

import Data.List(nub,sort)
import Test.QuickCheck

type Set a = [a]

invariant :: Ord a => Set a -> Bool
invariant xs =

and [x < y | (x,y) <- zip xs (tail xs)]

dts
Typewritten Text
Module heading as before, but I need some extra imports.

dts
Typewritten Text
Same type definition as before.

dts
Typewritten Text
But now I have an invariant: I insist that adjacent elements
are always in ascending order.
And since < rather than <=, there are no duplicates.

OrderedList.hs (2)
empty :: Set a
empty = []

insert :: Ord a => a -> Set a -> Set a
insert x [] = [x]
insert x (y:ys) | x < y = x : y : ys

| x == y = y : ys
| x > y = y : insert x ys

set :: Ord a => [a] -> Set a
set xs = nub (sort xs)

dts
Typewritten Text
Adding an element to a set is harder
then before - we need to put it in
the right place. O(n)

dts
Typewritten Text
Making a list into a set.
One way is to sort it and then remove duplicates,
which is O(n log n) provided Haskell uses a good
sorting algorithm.
Another way is to insert each item in the list into a set,
starting with the empty set:
set xs = foldr insert empty xs
but that is slower, O(n^2).

OrderedList.hs (3)
element :: Ord a => a -> Set a -> Bool
x ‘element‘ [] = False
x ‘element‘ (y:ys) | x < y = False

| x == y = True
| x > y = x ‘element‘ ys

equal :: Eq a => Set a -> Set a -> Bool
xs ‘equal‘ ys = xs == ys

dts
Typewritten Text
To check membership: because the list
is in order, we can stop when we get to
a bigger element.
Still O(n), even though faster than for
unordered lists.

dts
Typewritten Text
Equality: just use list equality.
O(n), much better than unordered lists.

OrderedList.hs (4)
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s

where
s = set xs

prop_element :: [Int] -> Bool
prop_element ys =

and [x ‘element‘ s == odd x | x <- ys]
where
s = set [x | x <- ys, odd x]

check =
quickCheck prop_invariant >>
quickCheck prop_element

Prelude OrderedList> check
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.

Part IV

Sets as ordered trees

dts
Typewritten Text
We can do better!
It's common to represent sets as trees.
If done properly, we can make membership O(log n) rather than O(n).

Tree.hs (1)
module Tree

(Set(Nil,Node),empty,insert,set,element,equal,check) where
import Test.QuickCheck

data Set a = Nil | Node (Set a) a (Set a)

list :: Set a -> [a]
list Nil = []
list (Node l x r) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r) =

invariant l && invariant r &&
and [y < x | y <- list l] &&
and [y > x | y <- list r]

dts
Typewritten Text
A set is a tree: either empty (Nil) or a node with a left subtree, a data value, and a right subtree.

dts
Typewritten Text
We can convert a tree to a list by appending all of the node labels in order. "Inorder traversal".

dts
Typewritten Text
The invariant says that, at every node, all the values in the left subtree are less than the node label,
and all the values in the right subtree are greater than the node label.

Tree.hs (2)
empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = Node Nil x Nil
insert x (Node l y r)

| x == y = Node l y r
| x < y = Node (insert x l) y r
| x > y = Node l y (insert x r)

set :: Ord a => [a] -> Set a
set = foldr insert empty

dts
Typewritten Text
Inserting an element needs to put it in the right place.
We use the node labels to find the right place.

dts
Typewritten Text
We can convert a list to a set by inserting each of its
elements, starting with the empty tree.

Tree.hs (3)
element :: Ord a => a -> Set a -> Bool
x ‘element‘ Nil = False
x ‘element‘ (Node l y r)

| x == y = True
| x < y = x ‘element‘ l
| x > y = x ‘element‘ r

equal :: Ord a => Set a -> Set a -> Bool
s ‘equal‘ t = list s == list t

dts
Typewritten Text
To check if x is an element, use the node labels
to find the right place to look.
At each node we can ignore a subtree, because of
the invariant - we know that x can't be there!
So at each node we can ignore about half of the
remaining elements, if the tree is balanced. O(log n).

dts
Typewritten Text
Equality is O(n): convert to a list in O(n), then check
for equality in O(n).

Tree.hs (4)
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s

where
s = set xs

prop_element :: [Int] -> Bool
prop_element ys =

and [x ‘element‘ s == odd x | x <- ys]
where
s = set [x | x <- ys, odd x]

check =
quickCheck prop_invariant >>
quickCheck prop_element

-- Prelude Tree> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.

Part V

Sets as balanced trees

dts
Typewritten Text
If we are clever, we can make sure that trees are always balanced: AVL trees
Invented 1962 by Adelson-Velskii and Landis.
First example you're seeing of a clever data structure - there are LOTS of others, see Inf2B.

dts
Typewritten Text
We're going to ensure that at each node, the depths of the left and right subtrees differ by at most 1.
It's impossible to do better than that, unless the tree has exactly 2^d - 1 elements.

BalancedTree.hs (1)
module BalancedTree

(Set(Nil,Node),empty,insert,set,element,equal,check) where
import Test.QuickCheck

type Depth = Int
data Set a = Nil | Node (Set a) a (Set a) Depth

node :: Set a -> a -> Set a -> Set a
node l x r = Node l x r (1 + (depth l ‘max‘ depth r))

depth :: Set a -> Int
depth Nil = 0
depth (Node _ _ _ d) = d

dts
Typewritten Text
Same data representation, but I keep track of the depth at each node.

dts
Typewritten Text
When I build a node, I need to calculate its depth.

BalancedTree.hs (2)
list :: Set a -> [a]
list Nil = []
list (Node l x r _) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r d) =

invariant l && invariant r &&
and [y < x | y <- list l] &&
and [y > x | y <- list r] &&
abs (depth l - depth r) <= 1 &&
d == 1 + (depth l ‘max‘ depth r)

dts
Typewritten Text
I can turn a tree into a list as before.

dts
Typewritten Text
The invariant is the same as before, plus the balance property.
Also, the depth component of each node should be accurate.

BalancedTree.hs (3)
empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = node empty x empty
insert x (Node l y r _)

| x == y = node l y r
| x < y = rebalance (node (insert x l) y r)
| x > y = rebalance (node l y (insert x r))

set :: Ord a => [a] -> Set a
set = foldr insert empty

dts
Typewritten Text
Inserting is just as before, except that
after inserting I need to rebalance.
Rebalancing is the tricky part.

Rebalancing

B CB

C

yx

y x

A

A

Node (Node a x b) y c --> Node a x (Node b y c)

z

B

y

x

C

A

D

DCA

B

y

x z

Node (Node a x (Node b y c) z d)
--> Node (Node a x b) y (Node c z d)

dts
Typewritten Text
Rebalancing is best understood by using these pictures.

dts
Typewritten Text
A is more than 1 longer than C: rearrange, retaining the order AxByC

dts
Typewritten Text
C is more than 1 longer than D: rearrange, retaining the order AxByCzD.
These, plus symmetric variants, are the only two cases.

BalancedTree.hs (4)
rebalance :: Set a -> Set a
rebalance (Node (Node a x b _) y c _)

| depth a >= depth b && depth a > depth c
= node a x (node b y c)

rebalance (Node a x (Node b y c _) _)
| depth c >= depth b && depth c > depth a
= node (node a x b) y c

rebalance (Node (Node a x (Node b y c _) _) z d _)
| depth (node b y c) > depth d
= node (node a x b) y (node c z d)

rebalance (Node a x (Node (Node b y c _) z d _) _)
| depth (node b y c) > depth a
= node (node a x b) y (node c z d)

rebalance a = a

dts
Typewritten Text
Here's the code - easy to understand if you look at the pictures.
There are 5 cases - the 2 we've seen, plus symmetric variants, plus the case where no rebalancing is required.

BalancedTree.hs (5)
element :: Ord a => a -> Set a -> Bool
x ‘element‘ Nil = False
x ‘element‘ (Node l y r _)

| x == y = True
| x < y = x ‘element‘ l
| x > y = x ‘element‘ r

equal :: Ord a => Set a -> Set a -> Bool
s ‘equal‘ t = list s == list t

dts
Typewritten Text
Element test as before.
Now O(log n), because the tree is balanced.

dts
Typewritten Text
Equality as before, O(n).

BalancedTree.hs (6)
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s

where
s = set xs

prop_element :: [Int] -> Bool
prop_element ys =

and [x ‘element‘ s == odd x | x <- ys]
where
s = set [x | x <- ys, odd x]

check =
quickCheck prop_invariant >>
quickCheck prop_element

-- Prelude BalancedTree> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.

Part VI

Complexity, revisited

Summary

insert set element equal

List O(1) O(1) O(n) O(n2)

OrderedList O(n) O(n log n) O(n) O(n)

Tree
O(log n)∗

O(n)†
O(n log n)∗

O(n2)†
O(log n)∗

O(n)†
O(n)

BalancedTree O(log n) O(n log n) O(log n) O(n)

* average case / † worst case

dts
Typewritten Text
Here is a summary: considering insertion, creating of a set from a list, element testing, and equality.

dts
Typewritten Text
Balanced tree is the best.
Actually, you need to consider the mix of operations
List might be best if you know that you will be doing lots of insertions and almost no element testing or equality.

