
Informatics 1
Functional Programming Lecture 5

Function properties

Don Sannella
University of Edinburgh

Part III

Append

Append
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

(’a’ : (’b’ : (’c’ : []))) ++ (’d’ : (’e’ : []))
=

’a’ : ((’b’ : (’c’ : [])) ++ (’d’ : (’e’ : [])))
=

’a’ : (’b’ : ((’c’ : []) ++ (’d’ : (’e’ : []))))
=

’a’ : (’b’ : (’c’ : ([] ++ (’d’ : (’e’ : [])))))
=

’a’ : (’b’ : (’c’ : (’d’ : (’e’ : []))))
=

"abcde"

dts
Typewritten Text
You've seen ++ in a previous lecture.
Here is the definition.

dts
Typewritten Text
[a] means "list of a".
a is a TYPE VARIABLE, and can stand for any type.

dts
Typewritten Text
The definition of ++ is recursive in its first argument.
The computation is hard to read - the parentheses get in the way.

Append
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

’a’ : ("bc" ++ "de")
=

’a’ : (’b’ : ("c" ++ "de"))
=

’a’ : (’b’ : (’c’ : ("" ++ "de")))
=

’a’ : (’b’ : (’c’ : "de"))
=

"abcde"

dts
Typewritten Text
Here is the same thing again, using string notation for character lists.
Question: why is recursion in the FIRST argument?
Try doing recursion in the second argument instead, and see what happens.
I don't think it's possible, at least not directly.

Properties of operators
• There are a few key properties about operators: associativity, identity,

commutativity, distributivity, zero, idempotence. You should know and
understand these properties.

• When you meet a new operator, the first question you should ask is “Is it
associative?” The second is “Does it have an identity?”

• Associativity is our friend, because it means we don’t need to worry about
parentheses. The program is easier to read.

• Associativity is our friend, because it is key to writing programs that run
twice as fast on dual-core machines, and a thousand times as fast on machines
with a thousand cores.

Properties of append
prop_append_assoc :: [Int] -> [Int] -> [Int] -> Bool
prop_append_assoc xs ys zs =

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

prop_append_ident :: [Int] -> Bool
prop_append_ident xs =

xs ++ [] == xs && xs == [] ++ xs

prop_append_cons :: Int -> [Int] -> Bool
prop_append_cons x xs =

[x] ++ xs == x : xs

Efficiency
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

’a’ : ("bc" ++ "de")
=

’a’ : (’b’ : ("c" ++ "de"))
=

’a’ : (’b’ : (’c’ : ("" ++ "de")))
=

’a’ : (’b’ : (’c’ : "de"))
=

"abcde"

Computing xs ++ ys takes about n steps, where n is the length of xs.

dts
Typewritten Text
Time is proportional to the length of xs - we say it is "linear in the length of xs". The length of ys doesn't matter.
So ++ isn't commutative with respect to time - the order matters.

A useful fact
-- prop_sum.hs
import Test.QuickCheck

prop_sum :: Int -> Property
prop_sum n = n >= 0 ==> sum [1..n] == n * (n+1) ‘div‘ 2

[melchior]dts: ghci prop_sum.hs
GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help

*Main> quickCheck prop_sum
+++ OK, passed 100 tests.

*Main>

Associativity and Efficiency: Left vs. Right
Compare computing (associated to the left)

((xs1 ++ xs2) ++ xs3) ++ xs4

with computing (associated to the right)

xs1 ++ (xs2 ++ (xs3 ++ xs4))

where n1, n2, n3, n4 are the lengths of xs1,xs2,xs3,xs4.
Associating to the left takes

n1 + (n1 + n2) + (n1 + n2 + n3)

steps. If we have m lists of length n, it takes about m2n steps.
Associating to the right takes

n1 + n2 + n3

steps. If we have m lists of length n, it takes about mn steps.

When m = 1000, the first is a thousand times slower than the second!

dts
Typewritten Text
So ++ associates to the right in Haskell.

dts
Typewritten Text
(uses the fact on the last page)

Associativity and Efficiency: Sequential vs. Parallel
Compare computing (sequential)

x1 + (x2 + (x3 + (x4 + (x5 + (x6 + (x7 + x8))))))

with computing (parallel)

((x1 + x2) + (x3 + x4)) + ((x5 + x6) + (x7 + x8))

In sequence, summing 8 numbers takes 7 steps.
If we have m numbers it takes m− 1 steps.

In parallel, summing 8 numbers takes 3 steps.

x1 + x2 and x3 + x4 and x5 + x6 and x7 + x8

(x1 + x2) + (x3 + x4) and (x5 + x6) + (x7 + x8),

((x1 + x2) + (x3 + x4)) + ((x5 + x6) + (x7 + x8))

If we have m numbers it takes log2 m steps.

When m = 1000, the first is a hundred times slower than the second!

dts
Typewritten Text
Associative functions are great for parallelising computation!

dts
Typewritten Text
BUT:

It's more important to be clear than to be efficient:
- to you, next week or next year
- to people you are working with

Pretend that the next person who reads your code is a dangerous psychopath, and they know where you live.
Make it READABLE.
Making it fast is the LAST thing to do.

Much better:
- get it right, make it readable and easy to understand
- then MEASURE how fast it runs
- if it runs too slow, fix the bottleneck

Premature optimisation is the root of much evil!

