
Informatics 1
Functional Programming Lectures 13 and 14

Type Classes

Don Sannella
University of Edinburgh

Part I

Type classes

Element
elem :: Eq a => a -> [a] -> Bool

-- comprehension
elem x ys = or [x == y | y <- ys]

-- recursion
elem x [] = False
elem x (y:ys) = x == y || elem x ys

-- higher-order
elem x ys = foldr (||) False (map (x ==) ys)

dts
Typewritten Text
You've seen types like the one for elem, beginning with Eq a => ... resp. Ord a => ...
These express the requirement that a is a type whose values can be tested for equality resp. order (<).

dts
Typewritten Text
Here are 3 ways of writing elem. No matter how you defined it, you need to use ==.
That's where the requirement Eq a comes from.

Using element
*Main> elem 1 [2,3,4]
False

*Main> elem ’o’ "word"
True

*Main> elem (1,’o’) [(0,’w’),(1,’o’),(2,’r’),(3,’d’)]
True

*Main> elem "word" ["list","of","word"]
True

*Main> elem (\x -> x) [(\x -> -x), (\x -> -(-x))]
No instance for (Eq (a -> a)) arising from a use of ‘elem’
Possible fix: add an instance declaration for (Eq (a -> a))

dts
Typewritten Text
elem works for Int

dts
Typewritten Text
elem works for Char

dts
Typewritten Text
elem works for (Int,Char)

dts
Typewritten Text
elem works for String = [Char]

dts
Typewritten Text
but elem doesn't work for functions

dts
Typewritten Text
Testing equality of two functions f,g :: Int -> Int would require testing f x == g x for every possible x :: Int.
That would take forever. So Haskell refuses to try.
The same goes for any type INVOLVING functions, for instance (Int->Int,Bool).
The error message invites you to define equality for this type yourself - see below for how to do that.

Equality type class
class Eq a where

(==) :: a -> a -> Bool

instance Eq Int where
(==) = eqInt

instance Eq Char where
x == y = ord x == ord y

instance (Eq a, Eq b) => Eq (a,b) where
(u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
[] == [] = True
[] == y:ys = False
x:xs == [] = False
x:xs == y:ys = (x == y) && (xs == ys)

dts
Typewritten Text
Here's how you could define the TYPE CLASS Eq if it wasn't built in.
The definition gives one or more functions that need to be provided
by any instance of that class.

dts
Typewritten Text
Then you can declare that a type is an INSTANCE of the type class
by saying what that function / those functions are for that type.

dts
Typewritten Text
The definitions of the required functions can be as complicated as you like.

Element, translation
data EqDict a = EqD (a -> a -> Bool)

eq :: EqDict a -> a -> a -> Bool
eq (EqDict f) = f

elem :: EqD a -> a -> [a] -> Bool

-- comprehension
elem d x ys = or [eq d x y | y <- ys]

-- recursion
elem d x [] = False
elem d x (y:ys) = eq d x y || elem x ys

-- higher-order
elem d x ys = foldr (||) False (map (eq d x) ys)

dts
Typewritten Text
You can define Haskell with type classes by giving a translation into Haskell without type classes.
EqDict a is an equality DICTIONARY - an equality function packaged up into a new type.
(In general, a dictionary will package up several functions.)
eq extracts the equality function from an equality dictionary.
We can then define elem with an extra argument d, which tells it how to compute equality on a.
Instead of x==y, we write eq d x y

Type classes, translation
dInt :: EqDict Int
dInt = EqD eqInt

dChar :: EqDict Char
dChar = EqD f

where
f x y = eq dInt (ord x) (ord y)

dPair :: (EqDict a, EqDict b) -> EqDict (a,b)
dPair (da,db) = EqD f

where
f (u,v) (x,y) = eq da u x && eq db v y

dList :: EqDict a -> EqDict [a]
dList d = EqD f

where
f [] [] = True
f [] (y:ys) = False
f (x:xs) [] = False
f (x:xs) (y:ys) = eq d x y && eq (dList d) xs ys

dts
Typewritten Text
We build up dictionaries, sometimes using other dictionaries.
Each INSTANCE declaration creates a dictionary.

Using element, translation
*Main> elem dInt 1 [2,3,4]
False

*Main> elem dChar ’o’ "word"
True

*Main> elem (dPair dInt dChar) (1,’o’) [(0,’w’),(1,’o’)]
True

*Main> elem (dList dChar) "word" ["list","of","word"]
True

Haskell uses types to write code for you!

dts
Typewritten Text
Uses of elem then require the appropriate dictionary as an explicit argument.
But Haskell does all of this automatically, using the types that it can infer.
You don't need to do it yourself and you don't have an opportunity to get it wrong.

Part II

Eq, Ord, Show

Eq, Ord, Show
class Eq a where

(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

-- minimum definition: (==)
x /= y = not (x == y)

class (Eq a) => Ord a where
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool

-- minimum definition: (<=)
x < y = x <= y && x /= y
x > y = y < x
x >= y = y <= x

class Show a where
show :: a -> String

dts
Typewritten Text
Eq, Ord and Show are built-in type classes.

dts
Typewritten Text
Eq actually has two functions, == and /=

dts
Typewritten Text
You can define a default for some functions in terms of others
but instances can override the default.

dts
Typewritten Text
Ord EXTENDS Eq
Notice that the default definition of < requires equality.

dts
Typewritten Text
Show: need a way of converting a value to a String.

Part III

Booleans, Tuples, Lists

Instances for booleans
instance Eq Bool where

False == False = True
False == True = False
True == False = False
True == True = True

instance Ord Bool where
False <= False = True
False <= True = True
True <= False = False
True <= True = True

instance Show Bool where
show False = "False"
show True = "True"

dts
Typewritten Text
Here's how instances of Eq, Ord and Show can be defined for Bool.

Instances for pairs
instance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (x’,y’) = x == x’ && y == y’

instance (Ord a, Ord b) => Ord (a,b) where
(x,y) <= (x’,y’) = x < x’ || (x == x’ && y <= y’)

instance (Show a, Show b) => Show (a,b) where
show (x,y) = "(" ++ show x ++ "," ++ show y ++ ")"

dts
Typewritten Text
Here's how instances of Eq, Ord and Show can be defined for pairs, using Eq, Ord and Show for each component type.

Instances for lists
instance Eq a => Eq [a] where

[] == [] = True
[] == y:ys = False
x:xs == [] = False
x:xs == y:ys = x == y && xs == ys

instance Ord a => Ord [a] where
[] <= ys = True
x:xs <= [] = False
x:xs <= y:ys = x < y || (x == y && xs <= ys)

instance Show a => Show [a] where
show [] = "[]"
show (x:xs) = "[" ++ showSep x xs ++ "]"

where
showSep x [] = show x
showSep x (y:ys) = show x ++ "," ++ showSep y ys

dts
Typewritten Text
List is similar. We've seen equality already.
Order is an extension of the order on pairs: called dictionary ordering or LEXICOGRAPHIC ORDERING.

Deriving clauses
data Bool = False | True

deriving (Eq, Ord, Show)

data Pair a b = MkPair a b
deriving (Eq, Ord, Show)

data List a = Nil | Cons a (List a)
deriving (Eq, Ord, Show)

Haskell uses types to write code for you!

dts
Typewritten Text
You can get definitions of instances of Eq, Ord and Show for free for algebraic types.

Part IV

Sets, revisited

Sets, revisited
instance Ord a => Eq (Set a) where

s == t = s ‘equal‘ t

Note that this differs from the derived instance!

dts
Typewritten Text
Here's how we can make Set a an instance of Eq.
This refers to the equality function that we defined on the underlying representation of sets.
The one that Haskell would give you for free is different (except for sets represented as ordered lists).

Part V

Numbers

Numerical classes
class (Eq a, Show a) => Num a where

(+),(-),(*) :: a -> a -> a
negate :: a -> a
fromInteger :: Integer -> a
-- minimum definition: (+),(-),(*),fromInteger
negate x = fromInteger 0 - x

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a
-- minimum definition: (/), fromRational
recip x = 1/x

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
div, mod :: a -> a -> a
toInteger :: a -> Integer

dts
Typewritten Text
\There are several type classes for different kinds of numbers. Here's a simplified version of some of them.

A built-in numerical type
instance Num Float where

(+) = builtInAddFloat
(-) = builtInSubtractFloat
(*) = builtInMultiplyFloat
negate = builtInNegateFloat
fromInteger = builtInFromIntegerFloat

instance Fractional Float where
(/) = builtInDivideFloat
fromRational = builtInFromRationalFloat

Natural.hs (1)
module Natural(Nat) where
import Test.QuickCheck

data Nat = MkNat Integer

invariant :: Nat -> Bool
invariant (MkNat x) = x >= 0

instance Eq Nat where
MkNat x == MkNat y = x == y

instance Ord Nat where
MkNat x <= MkNat y = x <= y

instance Show Nat where
show (MkNat x) = show x

dts
Typewritten Text
We can also define our own numerical types.
Natural numbers are integers that are >= 0.

dts
Typewritten Text
Remember, we introduce a constructor that is not exported
in order to protect the abstraction.

Natural.hs (2)
instance Num Nat where

MkNat x + MkNat y = MkNat (x + y)
MkNat x - MkNat y

| x >= y = MkNat (x - y)
| otherwise = error (show (x-y) ++ " is negative")

MkNat x * MkNat y = MkNat (x * y)
fromInteger x

| x >= 0 = MkNat x
| otherwise = error (show x ++ " is negative")

negate = undefined

dts
Typewritten Text
Now we can declare Nat as an instance of Num.
We need these operations to PRESERVE THE INVARIANT: if x, y satisfy the invariant, so should x+y etc.

Natural.hs (3)
prop_plus :: Integer -> Integer -> Property
prop_plus m n =

(m >= 0) && (n >= 0) ==> (m+n >= 0)

prop_times :: Integer -> Integer -> Property
prop_times m n =

(m >= 0) && (n >= 0) ==> (m*n >= 0)

prop_minus :: Integer -> Integer -> Property
prop_minus m n =

(m >= 0) && (n >= 0) && (m >= n) ==> (m-n >= 0)

dts
Typewritten Text
Here are QuickCheck properties for checking that the invariant is preserved.
The invariant isn't preserved if Nat is represented using Int (computer integers)
because adding big numbers can give a negative result,
but it is preserved if they are represented using Integer (infinite-precision integers).

NaturalTest.hs
module NaturalTest where
import Natural

m, n :: Nat
m = fromInteger 2
n = fromInteger 3

Test run
ghci NaturalTest
Ok, modules loaded: NaturalTest, Natural.

*NaturalTest> m
2

*NaturalTest> n
3

*NaturalTest> m+n
5

*NaturalTest> n-m
1

*NaturalTest> m-n

*** Exception: -1 is negative

*NaturalTest> m*n
6

*NaturalTest> fromInteger (-5) :: Nat

*** Exception: -5 is negative

*NaturalTest> MkNat (-5)
Not in scope: data constructor ‘MkNat’

Hiding—the secret of abstraction
module Natural(Nat) where ...

> ghci NaturalTest

*NaturalTest> let m = fromInteger 2

*NaturalTest> let s = fromInteger (-5)

*** Exception: -5 is negative

*NaturalTest> let s = MkNat (-5)
Not in scope: data constructor ‘MkNat’

vs.
module NaturalUnabs(Nat(MkNat)) where ...

> ghci NaturalUnabs

*NaturalUnabs> let p = MkNat (-5) -- breaks invariant

*NaturalUnabs> invariant p
False

dts
Typewritten Text
If I export Nat and not MkNat, I can't break the abstraction.
If you check that all of the functions preserve the invariant, then all values are guaranteed to satisfy it.

Part VI

Seasons

Seasons
data Season = Winter | Spring | Summer | Fall

next :: Season -> Season
next Winter = Spring
next Spring = Summer
next Summer = Fall
next Fall = Winter

warm :: Season -> Bool
warm Winter = False
warm Spring = True
warm Summer = True
warm Fall = True

Eq, Ord
instance Eq Season where

Winter == Winter = True
Spring == Spring = True
Summer == Summer = True
Fall == Fall = True
_ == _ = False

instance Ord Season where
Spring <= Winter = False
Summer <= Winter = False
Summer <= Spring = False
Fall <= Winter = False
Fall <= Spring = False
Fall <= Summer = False
_ <= _ = True

instance Show Season where
show Winter = "Winter"
show Spring = "Spring"
show Summer = "Summer"
show Fall = "Fall"

dts
Typewritten Text
Here's how to define Season as an instance of Eq, Ord and Show

Class Enum
class Enum a where

toEnum :: Int -> a
fromEnum :: a -> Int
succ, pred :: a -> a
enumFrom :: a -> [a] -- [x..]
enumFromTo :: a -> a -> [a] -- [x..y]
enumFromThen :: a -> a -> [a] -- [x,y..]
enumFromThenTo :: a -> a -> a -> [a] -- [x,y..z]

-- minimum definition: toEnum, fromEnum
succ x = toEnum (fromEnum x + 1)
pred x = toEnum (fromEnum x - 1)
enumFrom x

= map toEnum [fromEnum x ..]
enumFromTo x y

= map toEnum [fromEnum x .. fromEnum y]
enumFromThen x y

= map toEnum [fromEnum x, fromEnum y ..]
enumFromThenTo x y z

= map toEnum [fromEnum x, fromEnum y .. fromEnum z]

dts
Typewritten Text
Here's another type class, Enum, used for giving meaning to expressions like [x..y].

Syntactic sugar
-- [x..] = enumFrom x
-- [x..y] = enumFromTo x y
-- [x,y..] = enumFromThen x y
-- [x,y..z] = enumFromThenTo x y z

Enumerating Int
instance Enum Int where

toEnum x = x
fromEnum x = x
succ x = x+1
pred x = x-1
enumFrom x = iterate (+1) x
enumFromTo x y = takeWhile (<= y) (iterate (+1) x)
enumFromThen x y = iterate (+(y-x)) x
enumFromThenTo x y z

= takeWhile (<= z) (iterate (+(y-x)) x)

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs) | p x = x : takeWhile p xs

| otherwise = []

dts
Typewritten Text
Now we can declare Int as an instance of Enum.

Enumerating Seasons
instance Enum Season where

fromEnum Winter = 0
fromEnum Spring = 1
fromEnum Summer = 2
fromEnum Fall = 3

toEnum 0 = Winter
toEnum 1 = Spring
toEnum 2 = Summer
toEnum 3 = Fall

dts
Typewritten Text
Here is Season defined as an instance of Enum.

Deriving Seasons
data Season = Winter | Spring | Summer | Fall

deriving (Eq, Ord, Show, Enum)

Haskell uses types to write code for you!

Seasons, revisited
next :: Season -> Season
next x = toEnum ((fromEnum x + 1) ‘mod‘ 4)

warm :: Season -> Bool
warm x = x ‘elem‘ [Spring .. Fall]

-- [Spring .. Fall] = [Spring, Summer, Fall]

dts
Typewritten Text
Having defined Season as an instance of Enum, we can give better definitions of next and warm.

Part VII

Shape

Shape
type Radius = Float
type Width = Float
type Height = Float

data Shape = Circle Radius
| Rect Width Height

area :: Shape -> Float
area (Circle r) = pi * rˆ2
area (Rect w h) = w * h

Eq, Ord, Show
instance Eq Shape where

Circle r == Circle r’ = r == r’
Rect w h == Rect w’ h’ = w == w’ && h == h’
_ == _ = False

instance Ord Shape where
Circle r <= Circle r’ = r < r’
Circle r <= Rect w’ h’ = True
Rect w h <= Rect w’ h’ = w < w’ || (w == w’ && h <= h’)
_ <= _ = False

instance Show Shape where
show (Circle r) = "Circle " ++ showN r
show (Radius w h) = "Radius " ++ showN w ++ " " ++ showN h

showN :: (Num a) => a -> String
showN x | x >= 0 = show x

| otherwise = "(" ++ show x ++ ")"

dts
Typewritten Text
Here's Shape as an instance of Eq, Ord and Show.

Deriving Shapes
data Shape = Circle Radius

| Rect Width Height
deriving (Eq, Ord, Show)

Haskell uses types to write code for you!

dts
Typewritten Text
You get all of that for free using deriving.

Part VIII

Expressions

Expression Trees
data Exp = Lit Int

| Exp :+: Exp
| Exp :*: Exp

eval :: Exp -> Int
eval (Lit n) = n
eval (e :+: f) = eval e + eval f
eval (e :*: f) = eval e * eval f

Main> eval (Lit 2 :+: (Lit 3 :: Lit 3))
11

Main> eval ((Lit 2 :+: Lit 3) :: Lit 3)
15

Eq, Ord, Show
instance Eq Exp where

Lit n == Lit n’ = n == n’
e :+: f == e’ :+: f’ = e == e’ && f == f’
e :*: f == e’ :*: f’ = e == e’ && f == f’
_ == _ = False

instance Ord Exp where
Lit n <= Lit n’ = n < n’
Lit n <= e’ :+: f’ = True
Lit n <= e’ :*: f’ = True
e :+: f <= e’ :+: f’ = e < e’ || (e == e’ && f <= f’)
e :+: f <= e’ :*: f’ = True
e :*: f <= e’ :*: f’ = e < e’ || (e == e’ && f <= f’)
_ <= _ = False

instance Show Exp where
show (Lit n) = "Lit " ++ showN n
show (e :+: f) = "(" ++ show e ++ ":+:" ++ show f ++ ")"
show (e :*: f) = "(" ++ show e ++ ":*:" ++ show f ++ ")"

dts
Typewritten Text
Here's Exp as an instance of Eq, Ord and Show.

Deriving Expressions
data Exp = Lit Int

| Exp :+: Exp
| Exp :*: Exp
deriving (Eq, Ord, Show)

Haskell uses types to write code for you!

dts
Typewritten Text
You get all of that for free using deriving.

