
Informatics 1
Functional Programming Lecture 6, continued

More fun with recursion

Don Sannella
University of Edinburgh



Part I

Select, take, and drop



Select, take, and drop
Prelude> "words" !! 3
’d’

Prelude> take 3 "words"
"wor"

Prelude> drop 3 "words"
"ds"

dts
Typewritten Text
Select the item in the nth position of a list.
Isn't used nearly as often as you'd expect.

dts
Typewritten Text
Return the first n items in a list.

dts
Typewritten Text
Return all except the first n items in a list.

dts
Typewritten Text
These are all built-in functions in Haskell. They work on lists of any type, not just strings.



Select, take, and drop (comprehensions)
selectComp :: [a] -> Int -> a -- (!!)
selectComp xs i = the [ x | (j,x) <- zip [0..] xs, j == i ]

where
the [x] = x

takeComp :: Int -> [a] -> [a]
takeComp i xs = [ x | (j,x) <- zip [0..] xs, j < i ]

dropComp :: Int -> [a] -> [a]
dropComp i xs = [ x | (j,x) <- zip [0..] xs, j >= i ]

dts
Typewritten Text
All of these can be defined using the same trick as in the comprehension definition of search, with zip [0..] xs.
Using different names to avoid conflict with the built-in functions.



How take works (comprehension)
takeComp :: Int -> [a] -> [a]
takeComp i xs = [ x | (j,x) <- zip [0..] xs, j < i ]

take 3 "words"
=

[ x | (j,x) <- zip [0..] "words", j < 3 ]
=

[ x | (j,x) <- [(0,’w’),(1,’o’),(2,’r’),(3,’d’),(4,’s’)],
j < 3 ]

=
[’w’|0<3]++[’o’|1<3]++[’r’|2<3]++[’d’|3<3]++[’s’|4<3]

=
[’w’]++[’o’]++[’r’]++[]++[]

=
"wor"



Lists
Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• null, written [], or

• constructed, written x:xs,
with head x (an element), and tail xs (a list).

dts
Typewritten Text
Remember the definition of lists ...



Natural numbers
Every natural number can be written using only (+1) and 0.

3 = ((0 + 1) + 1) + 1

A recursive definition: A natural number is either

• zero, written 0, or

• successor, written n+1
with predecessor n (a natural number).

dts
Typewritten Text
... we can do something similar to define NATURAL NUMBERS (positive integers).
Then we can use this to define functions using recursion on natural numbers.
In Haskell, we use n and n-1 rather then n+1 and n, once we have dealt with n=0.



Select, take, and drop (recursion)
(!!) :: [a] -> Int -> a
(x:xs) !! 0 = x
(x:xs) !! i = xs !! (i-1)

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop i [] = []
drop i (x:xs) = drop (i-1) xs

dts
Typewritten Text
These definitions do simultaneous recursion on i and xs.
That's why we need two base cases.



Pattern matching and conditionals (squares)
Pattern matching

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

Conditionals with binding

squares :: [Int] -> [Int]
squares ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
x*x : squares xs



Pattern matching and conditionals (take)
Pattern matching

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

Conditionals with binding

take :: Int -> [a] -> [a]
take i ws

if i == 0 || null ws then
[]

else
let
x = head ws
xs = tail ws

in
x : take (i-1) xs



Pattern matching and guards (take)
Pattern matching

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

Guards

take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) | i > 0 = x : take (i-1) xs



How take works (recursion)
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

take 3 "words"
=

’w’ : take 2 "ords"
=

’w’ : (’o’ : take 1 "rds")
=

’w’ : (’o’ : (’r’ : take 0 "ds"))
=

’w’ : (’o’ : (’r’ : []))
=

"wor"



The infinite case
take :: Int -> [a] -> [a]
take 0 xs = []
take i [] = []
take i (x:xs) = x : take (i-1) xs

takeComp :: Int -> [a] -> [a]
takeComp i xs = [ x | (j,x) <- zip [0..] xs, j < i ]

Prelude> take 3 [10..]
[10,11,12]

Prelude> takeComp 3 [10..]
[10,11,12 -- computation goes on forever!

dts
Typewritten Text
The comprehension version of take (takeComp) only works for finite lists - keeps going forever for infinite lists.
Using recursion, the cost is proportional to the number of elements taken.
Using comprehension, the cost is proportional to the length of the list.
(Same for drop and select.)



The infinite case explained
Function takeComp is equivalent to takeCompRec.

takeCompRec :: Int -> [a] -> [a]
takeCompRec i xs = helper 0 i xs

where
helper j i [] = []
helper j i (x:xs) | j < i = x : helper (j+1) i xs

| otherwise = helper (j+1) i xs

takeCompRec 3 [10..]
=

helper 0 3 [10..]
=

10 : helper 1 3 [11..]
=

10 : (11 : helper 2 3 [12..])
=

10 : (11 : (12 : helper 3 3 [13..]))
=

10 : (11 : (12 : helper 4 3 [14..]))
= ...



Part II

Arithmetic

dts
Typewritten Text
Optional material: arithmetic functions defined using recursion.



Arithmetic (recursion)
(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

(*) :: Int -> Int -> Int
m * 0 = 0
m * n = (m * (n-1)) + m

(ˆ) :: Int -> Int -> Int
m ˆ 0 = 1
m ˆ n = (m ˆ (n-1)) * m



How arithmetic works (recursion)
(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

2 + 3
=

(2 + 2) + 1
=

((2 + 1) + 1) + 1
=

(((2 + 0) + 1) + 1) + 1
=

((2 + 1) + 1) + 1
=

5



Giuseppe Peano (1858–1932)

The definition of the natural numbers is named the Peano axioms in his honour.
Made key contributions to the modern treatment of mathematical induction.




