
Informatics 1
Functional Programming Lecture 3

Lists and Comprehensions

Don Sannella
University of Edinburgh

Part I

List Comprehensions

dts
Typewritten Text
LISTS are the most important data structure in functional programming.
It's a COMPOUND data structure, for collecting simpler data together (integers, booleans, etc.).
All of the elements in a given list are of the same type.

Lists — Some examples
someNumbers :: [Int]
someNumbers = [1,2,3]

someChars :: [Char]
-- equivalent: someChars :: String

someChars = [’I’,’n’,’f’,’1’]
-- equivalent: someChars = "Inf1"

someLists :: [[Int]]
someLists = [[1],[2,4,2],[],[3,5]]

someFunctions :: [Picture -> Picture]
someFunctions = [invert,flipV]

someStuff = [1,"Inf1",[2,3]] -- type error!

someMoreNumbers :: [Int]
someMoreNumbers = [1..10]

dts
Typewritten Text
Lists are written with square brackets, with commas between items.
Earlier, we gave a function a name. Here we are giving a list a name.
someNumbers is a list of integers.
Lists can be as short (including empty) or as long as you want.

dts
Typewritten Text
A list of characters is called a STRING.
We have a special notion for such lists.

dts
Typewritten Text
someLists is a list of lists of integers.
The lists in someLists have different lengths.
One of them is empty.

dts
Typewritten Text
someFunctions is a list of functions.

dts
Typewritten Text
There are various shorthands for writing lists, see the book.
someMoreNumbers = [1,2,3,4,5,6,7,8,9,10]

List comprehensions — Generators
Prelude> [x*x | x <- [1,2,3]]
[1,4,9]

Prelude> [toLower c | c <- "Hello, World!"]
"hello, world!"

Prelude> [(x, even x) | x <- [1,2,3]]
[(1,False),(2,True),(3,False)]

x <- [1,2,3] is called a generator

<- is pronounced drawn from

dts
Typewritten Text
List comprehensions are for doing "whoosh"-style programming - operating on all of the items in a list at once.
It's supposed to resemble set notation in mathematics, for instance { x | 2 < x < 20 }.
Notice that the expression giving the result (normally) mentions the element that is drawn from the starting list.

dts
Typewritten Text
This is read: "for each x DRAWN FROM [1,2,3], return x*x".
So the result is [1*1, 2*2, 3*3].

dts
Typewritten Text
This is a list of PAIRS.
The items in a pair can have different types.
The items in this list have type (Int,Bool)
so the list has type [(Int,Bool)].
even :: Int -> Bool is a built-in function.

dts
Typewritten Text
This yields a list of characters, i.e. a string.
toLower :: Char -> Char is a built-in function.

List comprehensions — Guards
Prelude> [x | x <- [1,2,3], odd x]
[1,3]

Prelude> [x*x | x <- [1,2,3], odd x]
[1,9]

Prelude> [x | x <- [42,-5,24,0,-3], x > 0]
[42,24]

Prelude> [toLower c | c <- "Hello, World!", isAlpha c]
"helloworld"

odd x is called a guard

dts
Typewritten Text
A GUARD is an expression whose value is True or False.
It mentions the element being tested and is used for filtering - if True we keep the element, if False we leave it out.

dts
Typewritten Text
isAlpha :: Char -> Bool is a built-in function.
isAlpha c is True if c is a letter, false otherwise.

Sum, Product
Prelude> sum [1,2,3]
6

Prelude> sum []
0

Prelude> sum [x*x | x <- [1,2,3], odd x]
10

Prelude> product [1,2,3,4]
24

Prelude> product []
1

Prelude> let factorial n = product [1..n]
Prelude> factorial 4
24

dts
Typewritten Text
sum :: [Int] -> Int is a built-in function.
It computes the sum of the numbers in a list.

dts
Typewritten Text
product :: [Int] -> Int computes the product of the numbers in a list.

dts
Typewritten Text
sum [] = 0 because 0 is the IDENTITY for +: 0 + x = x = x + 0

dts
Typewritten Text
product [] = 1 because 1 is the identity for *: 1 * x = x = x * 1

dts
Typewritten Text
sum and product are called ACCUMULATORS.

Example uses of comprehensions
squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

sumSqOdd :: [Int] -> Int
sumSqOdd xs = sum [x*x | x <- xs, odd x]

dts
Typewritten Text
We can define functions using comprehension notation.

QuickCheck
-- sumSqOdd.hs

import Test.QuickCheck

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

sumSqOdd :: [Int] -> Int
sumSqOdd xs = sum [x*x | x <- xs, odd x]

prop_sumSqOdd :: [Int] -> Bool
prop_sumSqOdd xs = sum (squares (odds xs)) == sumSqOdd xs

dts
Typewritten Text
Here are two ways of defining the sum of squares of the odd numbers in a list.
prop_sumSqOdd tests, for a list xs, whether both ways give the same answer.

Running QuickCheck
[melchior]dts: ghci sumSqOdd.hs
GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
[1 of 1] Compiling Main (sumSqOdd.hs, interpreted)

*Main> quickCheck prop_sumSqOdd
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package QuickCheck-2.1 ... linking ... done.
+++ OK, passed 100 tests.

*Main>

dts
Typewritten Text
You can use quickCheck (imported with "import Test.QuickCheck" earlier) to test
whether prop_sumSqOdd yields True for 100 randomly-chosen lists of integers.

