Informatics 1

Functional Programming Lecture 2

Functions

Don Sannella

University of Edinburgh



Part 1

Functions



What 1s a function?

e A recipe for generating an output from inputs:
“Multiply a number by itself”™

e A set of (input, output) pairs:
(1,1) (2,4) (3,9) (4,16) (5,25) ...

e An equation:

fa=a’

e A graph relating inputs to output (for numbers only):

/"4




Kinds of data

e Integers: 42, -69
e Floats: 3.14

e Characters: ' h'

e Strings: "hello"

e Booleans: True, False

e Pictures: 1



Applying a function

invert :: Picture —> Picture
knight :: Picture

invert knight

invert

invert is a function. Every value in Haskell has a type, maybe more than one. We write value :: type.
A type is a category of values. Types of functions contain arrows.
When we write an expression (example: invert knight) then Haskell will complain if it can't make sense of the types.
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Composing functions

beside :: Picture -> Picture -> Picture
flipV :: Picture —-> Picture

invert :: Picture —-> Picture

knight :: Picture

beside (invert knight) (flipV knight)

invert

beside

flipV

beside is a function with two arguments. There is a reason for writing the type this way, to be explained later.
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Defining a new function

double :: Picture —> Picture
double p = Dbeside (invert p) (flipV p)

double knight

double

invert

besid

flipV

Functions are defined using equations. The variable name (p) is irrelevant - we could use pic or x instead.
double produces the picture we had before, but packaged to work on any picture, not just knight.
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Defining a new function

double :: Picture —> Picture
double p = Dbeside (invert p) (flipV p)

double knight

—»‘ double

We could write beside as an infix function instead:
double p = (invert p) "beside” (flipV p)
Any function can be written as infix by enclosing it in backquotes.
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Terminology

Type signature

double :: Picture -> Picture

Function declaration

double p = beside (invert p) (flipV p)
®

function name function body



Terminology

formal parameter actual parameter

[
double p = Dbeside (invert p) (flipV p)

O
double knight

function definition expression





