Informatics 1

Functional Programming Lecture 2

Functions

Don Sannella

University of Edinburgh



Part 1

Functions



What 1s a function?

e A recipe for generating an output from inputs:
“Multiply a number by itself”™

e A set of (input, output) pairs:
(1,1) (2,4) (3,9) (4,16) (5,25) ...

e An equation:

fa=a’

e A graph relating inputs to output (for numbers only):

/"4




Kinds of data

e Integers: 42, -69
e Floats: 3.14

e Characters: ' h'

e Strings: "hello"

e Booleans: True, False

e Pictures: 1



Applying a function

invert :: Picture —> Picture
knight :: Picture

invert knight

invert

invert is a function. Every value in Haskell has a type, maybe more than one. We write value :: type.
A type is a category of values. Types of functions contain arrows.
When we write an expression (example: invert knight) then Haskell will complain if it can't make sense of the types.


dts
Typewritten Text
invert is a function. Every value in Haskell has a type, maybe more than one. We write value :: type.
A type is a category of values. Types of functions contain arrows.
When we write an expression (example: invert knight) then Haskell will complain if it can't make sense of the types.



Composing functions

beside :: Picture -> Picture -> Picture
flipV :: Picture —-> Picture

invert :: Picture —-> Picture

knight :: Picture

beside (invert knight) (flipV knight)

invert

beside

flipV

beside is a function with two arguments. There is a reason for writing the type this way, to be explained later.


dts
Typewritten Text
beside is a function with two arguments. There is a reason for writing the type this way, to be explained later.


Defining a new function

double :: Picture —> Picture
double p = Dbeside (invert p) (flipV p)

double knight

double

invert

besid

flipV

Functions are defined using equations. The variable name (p) is irrelevant - we could use pic or x instead.
double produces the picture we had before, but packaged to work on any picture, not just knight.


dts
Typewritten Text
Functions are defined using equations. The variable name (p) is irrelevant - we could use pic or x instead.
double produces the picture we had before, but packaged to work on any picture, not just knight.


Defining a new function

double :: Picture —> Picture
double p = Dbeside (invert p) (flipV p)

double knight

—»‘ double

We could write beside as an infix function instead:
double p = (invert p) "beside” (flipV p)
Any function can be written as infix by enclosing it in backquotes.



dts
Typewritten Text
We could write beside as an infix function instead:
double p = (invert p) `beside` (flipV p)
Any function can be written as infix by enclosing it in backquotes.


Terminology

Type signature

double :: Picture -> Picture

Function declaration

double p = beside (invert p) (flipV p)
®

function name function body



Terminology

formal parameter actual parameter

[
double p = Dbeside (invert p) (flipV p)

O
double knight

function definition expression





