
Informatics 1
Functional Programming Lectures 5 and 6
Monday 12 and Tuesday 13 October 2009

More fun with recursion

Philip Wadler
University of Edinburgh

Tutorials
Tutorials start this week!

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

Do the tutorial work before the tutorial!

(You do not do the tutorial work during the tutorial!)

Bring a printout of your work to the tutorial!

Laboratories
Drop-in laboratories

Computer Lab West, Appleton Tower, level 5

Mondays 3–5pm

Tuesdays 2–5pm

Wednesdays 2–5pm

Thursdays 2–5pm

Fridays 3–5pm

Required text and reading
Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1–3 (pp. 1–52): by Mon 29 Sep 2008.
Thompson, Chapters 4–5 (pp. 53–95): by Mon 6 Oct 2008.
Thompson, Chapters 6–7 (pp. 96–134): by Mon 13 Oct 2008.
Thompson, Chapters 8–9 (pp. 135–166): by Mon 20 Oct 2008.

Required text and reading
Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1–3 (pp. 1–52)
by Friday 25 September 2009.
Thompson, Chapters 4–5 & 7 (pp. 53–95, 115–134)
by Monday 5 October 2009.
Thompson, Chapters 6 & 8 (pp. 96–114, 135–148)
by Monday 12 October 2009.

Part I

Booleans and characters

Boolean operators
not :: Bool -> Bool
(&&), (||) :: Bool -> Bool -> Bool

not False = True
not True = False

False && False = False
False && True = False
True && False = False
True && True = True

False || False = False
False || True = True
True || False = True
True || True = True

Defining operations on characters
isLower :: Char -> Bool
isLower x = ’a’ <= x && x <= ’z’

isUpper :: Char -> Bool
isUpper x = ’A’ <= x && x <= ’Z’

isDigit :: Char -> Bool
isDigit x = ’0’ <= x && x <= ’9’

isAlpha :: Char -> Bool
isAlpha x = isLower x || isUpper x

Defining operations on characters
digitToInt :: Char -> Int
digitToInt c | isDigit c = ord c - ord ’0’

intToDigit :: Int -> Char
intToDigit d | 0 <= d && d <= 9 = chr (ord ’0’ + d)

toLower :: Char -> Char
toLower c | isUpper c = chr (ord c - ord ’A’ + ord ’a’)

| otherwise = c

toUpper :: Char -> Char
toUpper c | isLower c = chr (ord c - ord ’a’ + ord ’A’)

| otherwise = c

Part II

Conditionals and Associativity

Conditional equations
max :: Int -> Int -> Int
max x y | x >= y = x

| y >= x = y

max3 :: Int -> Int -> Int -> Int
max3 x y z | x >= y && x >= z = x

| y >= x && y >= z = y
| z >= x && z >= y = z

Conditional equations with otherwise
max :: Int -> Int -> Int
max x y | x >= y = x

| otherwise = y

max3 :: Int -> Int -> Int -> Int
max3 x y z | x >= y && x >= z = x

| y >= x && y >= z = y
| otherwise = z

Conditional equations with otherwise
max :: Int -> Int -> Int
max x y | x >= y = x

| otherwise = y

max3 :: Int -> Int -> Int -> Int
max3 x y z | x >= y && x >= z = x

| y >= x && y >= z = y
| otherwise = z

otherwise :: Bool
otherwise = True

Conditional expressions
max :: Int -> Int -> Int
max x y = if x >= y then x else y

max3 :: Int -> Int -> Int -> Int
max3 x y z = if x >= y && x >= z then x

else if y >= x && y >= z then y
else z

Another way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = if x >= y then

if x >= z then x else z
else

if y >= z then y else z

Key points about conditionals
• As always: write your program in a form that is easy to read. Don’t worry

(yet) about efficiency: premature optimization is the root of much evil.

• Conditionals are your friend: without them, programs could do very little that
is interesting.

• Conditionals are your enemy: each conditional doubles the number of test
cases you must consider. A program with five two-way conditionals requires
25 = 32 test cases to try every path through the program. A program with ten
two-way conditionals requires 210 = 1024 test cases.

A better way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = max (max x y) z

An even better way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = x ‘max‘ y ‘max‘ z

max :: Int -> Int -> Int
max x y | x >= y = x

| otherwise = y

An even better way to define max3
max3 :: Int -> Int -> Int -> Int
max3 x y z = x ‘max‘ y ‘max‘ z

max :: Int -> Int -> Int
x ‘max‘ y | x >= y = x

| otherwise = y

x + y stands for (+) x y
x >= y stands for (>=) x y
x ‘max‘ y stands for max x y

Associativity
prop_max_assoc :: Int -> Int -> Int -> Bool
prop_max_assoc x y z =

(x ‘max‘ y) ‘max‘ z == x ‘max‘ (y ‘max‘ z)

It doesn’t matter where the parentheses go with an associative operator, so we
often omit them.

Associativity
prop_max_assoc :: Int -> Int -> Int -> Bool
prop_max_assoc x y z =

(x ‘max‘ y) ‘max‘ z == x ‘max‘ (y ‘max‘ z)

It doesn’t matter where the parentheses go with an associative operator, so we
often omit them.

Why we use infix notation
prop_max_assoc :: Int -> Int -> Int -> Bool
prop_max_assoc x y z =

max (max x y) z == max x (max y z)

This is much harder to read than infix notation!

Key points about associativity
• There are a few key properties about operators: associativity, identity,

commutativity, distributivity, zero, idempotence. You should know and
understand these properties.

• When you meet a new operator, the first question you should ask is “Is it
associative?” (The second is “Does it have an identity?”)

• Associativity is our friend, because it means we don’t need to worry about
parentheses. The program is easier to read.

• Associativity is our friend, because it is key to writing programs that run
twice as fast on dual-core machines, and a thousand times as fast on machines
with a thousand cores. We will study this later in the course.

Part III

Append

Append
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

(’a’ : (’b’ : (’c’ : []))) ++ (’d’ : (’e’ : []))
=

’a’ : ((’b’ : (’c’ : [])) ++ (’d’ : (’e’ : [])))
=

’a’ : (’b’ : ((’c’ : []) ++ (’d’ : (’e’ : []))))
=

’a’ : (’b’ : (’c’ : ([] ++ (’d’ : (’e’ : [])))))
=

’a’ : (’b’ : (’c’ : (’d’ : (’e’ : []))))
=

"abcde"

Append
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

"abc" ++ "de"
=

’a’ : ("bc" ++ "de")
=

’a’ : (’b’ : ("c" ++ "de"))
=

’a’ : (’b’ : (’c’ : ("" ++ "de")))
=

’a’ : (’b’ : (’c’ : "de"))
=

"abcde"

Properties of append
prop_append_assoc :: [Int] -> [Int] -> [Int] -> Bool
prop_append_assoc xs ys zs =

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

prop_append_ident :: [Int] -> Bool
prop_append_ident xs =

xs ++ [] == xs && xs == [] ++ xs

prop_append_cons :: Int -> [Int] -> Bool
prop_append_cons x xs =

[x] ++ xs == x : xs

Part IV

Counting

Counting
Prelude [1..3]
[1,2,3]
Prelude enumFromTo 1 3
[1,2,3]

Recursion

enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

How enumFromTo works (recursion)
enumFromTo :: Int -> Int -> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

enumFromTo 1 3
=

1 : enumFromTo 2 3
=

1 : (2 : enumFromTo 3 3)
=

1 : (2 : (3 : enumFromTo 4 3))
=

1 : (2 : (3 : []))
=

[1,2,3]

Factorial
Main*> factorial 3

Library functions

factorial :: Int -> Int
factorial n = product [1..n]

Recursion

factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

How factorial works (recursion)
factorialRec :: Int -> Int
factorialRec n = fact 1 n

where
fact :: Int -> Int -> Int
fact m n | m > n = 1

| m <= n = m * fact (m+1) n

factorialRec 3
=

fact 1 3
=

1 * fact 2 3
=

1 * (2 * fact 3 3)
=

1 * (2 * (3 * fact 4 3))
=

1 * (2 * (3 * 1))
=

6

Part V

Zip and search

Zip
zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip (x:xs) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0,1,2] "abc"
=

(0,’a’) : zip [1,2] "bc"
=

(0,’a’) : ((1,’b’) : zip [2] "c")
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [] []))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

Two equivalent definitions of zip
Shorter

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip (x:xs) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Longer

zip :: [a] -> [b] -> [(a,b)]
zip [] [] = []
zip [] (y:ys) = []
zip (x:xs) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Two alternative definitions of zip
Liberal

zip :: [a] -> [b] -> [(a,b)]
zip [] [] = []
zip [] (y:ys) = []
zip (x:xs) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Conservative

zipHarsh :: [a] -> [b] -> [(a,b)]
zipHarsh [] [] = []
zipHarsh (x:xs) (y:ys) = (x,y) : zipHarsh xs ys

Lists of different lengths
Prelude> zip [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zip [0,1,2] "abcde"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2] "abcde"
error

Prelude> zip [0,1,2,3,4] "abc"
[(0,’a’),(1,’b’),(2,’c’)]

Prelude> zipHarsh [0,1,2,3,4] "abc"
error

More fun with zip
Prelude> zip [0..] "words"
[(0,’w’),(1,’o’),(2,’r’),(3,’d’),(4,’s’)]

Prelude> let pairs xs = zip xs (tail xs)
Prelude> pairs "words"
[(’w’,’o’),(’o’,’r’),(’r’,’d’),(’d’,’s’)]

Zip with an infinite list
zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip (x:xs) [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0..] "abc"
=

zip [0..] (’a’ : (’b’ : (’c’ : [])))
=

(0,’a’) : zip [1..] (’b’ : (’c’ : []))
=

(0,’a’) : ((1,’b’) : zip [2..] (’c’ : []))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : zip [3..] []))
=

(0,’a’) : ((1,’b’) : ((2,’c’) : []))
=

[(0,’a’),(1,’b’),(2,’c’)]

Search
Main*> search "bookshop" ’o’
[1,2,6]

Comprehensions and library functions

search :: [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

Recursion

searchRec :: [a] -> a -> [Int]
searchRec xs y = srch xs y 0

where
srch :: [a] -> a -> Int -> [Int]
srch [] y i = []
srch (x:xs) y i

| x == y = i : srch xs y (i+1)
| otherwise = srch xs y (i+1)

How search works (comprehension)
search :: [a] -> a -> [Int]
search xs y = [i | (i,x) <- zip [0..] xs, x==y]

search "book" ’o’
=

[i | (i,x) <- zip [0..] "book", x==’o’]
=

[i | (i,x) <- [(0,’b’),(1,’o’),(2,’o’),(3,’k’)], x==’o’]
=

[0|’b’==’o’]++[1|’o’==’o’]++[2|’o’==’o’]++[3|’k’==’o’]
=

[]++[1]++[2]++[]
=

[1,2]

How search works (recursion)
searchRec xs y = srch xs y 0

where
srch [] y i = []
srch (x:xs) y i | x == y = i : srch xs y (i+1)

| otherwise = srch xs y (i+1)

searchRec "book" ’o’
=

srch "book" ’o’ 0
=

srch "ook" ’o’ 1
=

1 : srch "ok" ’o’ 2
=

1 : (2 : srch "ok" ’o’ 3)
=

1 : (2 : srch "" ’o’ 4)
=

1 : (2 : [])
=

[1,2]

Part VI

Select, take, and drop

Select, take, and drop
Prelude> "words" !! 3
’d’

Prelude> take 3 "words"
"wor"

Prelude> drop 3 "words"
"ds"

Select, take, and drop (comprehensions)
(!!) :: [a] -> Int -> a
xs !! i = the [x | (j,x) <- zip [0..] xs, j == i]

where
the [x] = x

take :: Int -> [a] -> [a]
take i xs = [x | (j,x) <- zip [0..] xs, j < i]

drop :: Int -> [a] -> [a]
drop i xs = [x | (j,x) <- zip [0..] xs, j >= i]

Select, take, and drop (recursion)
(!!) :: [a] -> Int -> a
(x:xs) !! 0 = x
(x:xs) !! i | i > 0 = xs !! (i-1)

take :: Int -> [a] -> [a]
take 0 xs = []
take i (x:xs) | i > 0 = x : take (i-1) xs

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop i (x:xs) | i > 0 = drop (i-1) xs

How take works (comprehension)
take :: Int -> [a] -> [a]
take i xs = [x | (j,x) <- zip [0..] xs, j < i]

take 3 "words"
=

[x | (j,x) <- zip [0..] "words", j < 3]
=

[x | (j,x) <- [(0,’w’),(1,’o’),(2,’r’),(3,’d’),(4,’s’)],
j < 3]

=
[’w’|0<3]++[’o’|1<3]++[’r’|2<3]++[’d’|3<3]++[’s’|4<3]

=
[’w’]++[’o’]++[’r’]++[]++[]

=
"wor"

How take works (recursion)
take :: Int -> [a] -> [a]
take 0 xs = []
take n [] | n > 0 = []
take n (x:xs) | n > 0 = x : take (n-1) xs

take 3 "words"
=

’w’ : take 2 "ords"
=

’w’ : (’o’ : take 1 "rds")
=

’w’ : (’o’ : (’r’ : take 0 "rds"))
=

’w’ : (’o’ : (’r’ : []))
=

"wor"

Lists
Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• null, written [], or

• constructed, written x:xs,
with head x (an element), and tail xs (a list).

Natural numbers
Every natural number can be written using only (+1) and 0.

= ((0 + 1) + 1) + 1

A recursive definition: A natural number is either

• zero, written 0, or

• successor, written n+1
with predecessor n (a natural number).

Select, take, and drop (recursion)
(!!) :: Int -> [a] -> a
(x:xs) !! 0 = x
(x:xs) !! i | i > 0 = xs !! (i-1)

take :: Int -> [a] -> [a]
take 0 xs = []
take i (x:xs) | i > 0 = x : take (i-1) xs

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop i (x:xs) | i > 0 = drop (i-1) xs

Select, take, and drop (n + 1 patterns)
(!!) :: Int -> [a] -> a
(x:xs) !! 0 = x
(x:xs) !! (i+1) = xs !! i

take :: Int -> [a] -> [a]
take 0 xs = []
take (i+1) (x:xs) = x : take i xs

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop (i+1) (x:xs) = drop i xs

How take works, reprise
take :: Int -> [a] -> [a]
take 0 xs = []
take (n+1) [] = []
take (n+1) (x:xs) = x : take n xs

take 3 "words"
=

take (((0+1)+1)+1) (’w’:(’o’:(’r’:(’d’:(’s’:[])))))
=

’w’ : take ((0+1)+1) (’o’:(’r’:(’d’:(’s’:[]))))
=

’w’ : (’o’ : take (0+1) (’r’:(’d’:(’s’:[]))))
=

’w’ : (’o’ : (’r’ : take 0 (’d’:(’s’:[]))))
=

’w’ : (’o’ : (’r’ : []))
=

"wor"

Arithmetic
(+) :: Int -> Int -> Int
m + 0 = m
m + (n+1) = (m + n) + 1

(*) :: Int -> Int -> Int
m * 0 = 0
m * (n+1) = (m * n) + m

(ˆ) :: Int -> Int -> Int
m ˆ 0 = 1
m ˆ (n+1) = (m ˆ n) * m

