Informatics 1

Functional Programming Lectures 5 and 6
Monday 12 and Tuesday 13 October 2009

More fun with recursion

Philip Wadler
University of Edinburgh

Tutorials

Tutorials start this week!

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

Do the tutorial work before the tutorial!
(You do not do the tutorial work during the tutorial!)

Bring a printout of your work to the tutorial!

I_aboratories

Drop-in laboratories
Computer Lab West, Appleton Tower, level 5
Mondays 3—-5pm
Tuesdays 2-5pm
Wednesdays 2-5pm
Thursdays 2-5pm
Fridays 3-5pm

Required text and reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1-3 (pp. 1-52): by Mon 29 Sep 2008.
Thompson, Chapters 4-5 (pp. 53-95): by Mon 6 Oct 2008.
Thompson, Chapters 67 (pp. 96—134): by Mon 13 Oct 2008.
Thompson, Chapters 8-9 (pp. 135-166): by Mon 20 Oct 2008.

Required text and reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1-3 (pp. 1-52)

by Friday 25 September 2009.

Thompson, Chapters 4-5 & 7 (pp. 53-93, 115-134)
by Monday 5 October 2009.

Thompson, Chapters 6 & 8 (pp. 96—114, 135-148)
by Monday 12 October 20009.

Part 1

Booleans and characters

Boolean operators

not Bool —> Bool
(&&), (] 1) Bool —-> Bool —> Bool
not False = True

not True = False
False && False False
False && True False
True && False False
True &§& True True
False || False False
False || True True
True | | False True
True | | True True

Defining operations on characters

isLower :: Char —> Bool
isLower x = ‘'a’' <= x && x <= "z’
1sUpper :: Char —> Bool
isUpper x = 'TA" <= x && x <= "2’
1sDigit :: Char —> Bool
isDigit x = "0’ <= x && x <= "9’
1sAlpha :: Char —> Bool

1sAlpha x = 1slLower x || 1sUpper x

Defining operations on characters

digitToInt :: Char —-> Int

digitToInt ¢ | 1sDigit ¢ = ord ¢ - ord ’0’

intToDigit :: Int —-> Char

intToDigit d | 0 <= d && d <= 9 = chr (ord "0’ + d)

toLower :: Char —> Char

toLower ¢ | 1sUpper ¢ = <chr (ord ¢ - ord A’ + ord ’"a’)
| otherwise = ¢

toUpper :: Char —> Char

toUpper ¢ | isLower ¢ = chr (ord ¢ - ord "a’ + ord "A'")

| otherwise = ¢

Part 11

Conditionals and Associativity

Conditional equations

max :: Int —-> Int —-> Int
max Xy | x >=vy = X
'y >=x =Yy
max3 :: Int —-> Int —-> Int —-> Int
max3 X y z2 | X >=y && x >= z =

|y >= X && Yy >= z
| z >= X && z >=y =

k<

Conditional equations with otherwise

max :: Int —> Int —-> Int
max Xy | x >=vy = X
| otherwise = vy
max3 :: Int -> Int -> Int -> Int
max3 X y z2 | X >y && x > z = X

|y >= X && y >= z =
| otherwise = Z

k<

Conditional equations with otherwise

max :: Int —> Int —-> Int
max Xy | x >=vy = X
| otherwise = vy
max3 :: Int -> Int -> Int -> Int
max3 X y z2 | X >y && x > z = X
|y >= X && Yy >= zZ Y
| otherwise = Z

otherwise :: Bool
otherwise = True

Conditional expressions

max :: Int —> Int —-> Int

max x y = 1f x >= y then x else y

max3 :: Int -> Int -> Int —-> Int

max3 x y z = 1f x >= vy && x >= z then x

else 1f y >= x && y >= z then y
else =z

Another way to define max3

max3 :: Int —-> Int -> Int -> Int
max3 x y z = 1f x >= y then
1f x > z then x else z
else
1if y >= z then y else z

Key points about conditionals

e As always: write your program in a form that is easy to read. Don’t worry
(yet) about efficiency: premature optimization is the root of much evil.

e Conditionals are your friend: without them, programs could do very little that
1s interesting.

e Conditionals are your enemy: each conditional doubles the number of test
cases you must consider. A program with five two-way conditionals requires
2° = 32 test cases to try every path through the program. A program with ten
two-way conditionals requires 2'° = 1024 test cases.

A better way to define max3

max3 :: Int —> Int —-> Int —-> Int
max3 X y Z = max (max x y) z

An even better way to define max3

max3 Int —> Int -> Int -> Int
max3 X y Z = X ‘max‘' y ‘max‘' z
max :: Int —> Int —-> Int

max x y | x >= vy =

X
| otherwise = vy

An even better way to define max3

max3 :: Int -> Int -> Int -> Int
max3 X y Z = X ‘max‘' y ‘max‘' z
max :: Int —> Int —-> Int
X ‘max''y | x >=y = X
| otherwise = vy
X + vy stands for (+) x vy
X >=y stands for (>=) X vy
X ‘max‘ y stands for max x Y

Associativity

prop_max_assoc :: Int -> Int —-> Int —-> Bool
prop_max_assoc X y z =

\ \

(x ‘max' y) ‘max' z == X 'max

It doesn’t matter where the parentheses go with an associative operator, so we
often omit them.

Associativity

prop_max_assoc :: Int -> Int —-> Int —-> Bool
prop_max_assoc X y z =
(x ‘max' y) ‘max' z == x ‘max‘' (y ‘max‘' z)

It doesn’t matter where the parentheses go with an associative operator, so we
often omit them.

Why we use infix notation

prop_max_assoc :: Int —> Int —> Int —-> Bool
prop_max_assoc X y z =
max (max x y) z == max X (max y z)

This 1s much harder to read than infix notation!

Key points about associativity

e There are a few key properties about operators: associativity, identity,
commutativity, distributivity, zero, idempotence. You should know and
understand these properties.

e When you meet a new operator, the first question you should ask 1s “Is it
associative?” (The second is “Does it have an identity?”)

e Associativity is our friend, because it means we don’t need to worry about
parentheses. The program is easier to read.

e Associativity is our friend, because it is key to writing programs that run
twice as fast on dual-core machines, and a thousand times as fast on machines
with a thousand cores. We will study this later in the course.

Part 111

Append

Append

(++) [a] —> [a] —>
[] ++ ys = yS
(x:xs) ++ ys = x :
"abc" ++ "de"

e b e
e (b s (e
e b (e
: ra’ ("b’ ("c’

: ra’ ("b’ ("c’

[1))) ++ (7d’ ("e’ [1))
(1)) ++ (7 df ("e’ [1)))
(1) ++ ("df ("e’ [1))))
(tl + (7a’ ("e’ [1)))))
(7 da’ ("e’ [1))))

Append

(++) :: [a] —-> [a] —> [a]

[] ++ ys = yS

(X:xs) ++ ys = X : (xXs ++ ys)
w abC" ++ " de w
14 al . ("bC" _I__l_ "de")
Ial : <Ibl : ("C" ++ "de"))

la/ . (Ib/ . (Ic/ . ("" ++ "de")))

Ial . (Ib/ . (ICI . "de"))

Properties of append

prop_append_assoc :: [Int] —> [Int]
prop_append_assoc XS ys zs =

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)
prop_append_ident :: [Int] —-> Bool
prop_append_ident xs =

Xs ++ [] == xs && Xs == [] ++ Xs
prop_append_cons :: Int —> [Int]

prop_append_cons xXx xXs =
[x] ++ Xs == X : Xs

—> Bool

—> Bool

Part IV

Counting

Counting
Prelude [1..3]

[1,2,3]
Prelude enumFromTo 1 3
[1,2,3]
Recursion
enumFromTo :: Int —-> Int —-> [Int]
enumFromTo m n | m > n = []

| m <= n = m : enumFromTo (m+1) n

How enumFromTo works (recursion)

enumFromTo :: Int -> Int —-> [Int]
enumFromTo m n | m > n = []
| m <= n = m : enumFromTo (m+1l) n

enumFromTo 1 3

1 : enumFromTo 2 3
: 1 : (2 : enumFromTo 3 3)
i 1 : (2 : (3 : enumFromTo 4 3))
l 1 (2 (3 = [1))

Factorial

Main*> factorial 3

Library functions

factorial :: Int —> Int
factorial n = product [1..n]
Recursion
factorialRec :: Int —-> Int
factorialRec n = fact 1 n
where
fact :: Int -> Int —-> Int
fact mn | m > n = 1

| m <= n = m *x fact (m+l) n

How factorial works (recursion)

factorialRec :: Int —-> Int
factorialRec n = fact 1 n
where
fact :: Int —> Int —-> Int
fact mn | m > n = 1
| m <= n = m % fact (m+l) n
factorialRec 3
fact 1 3
1 « fact 2 3
1 (2 fact 3 3)
1 x (2 = (3 = fact 4 3))

1~ (2 x (3 % 1))

Part V

Z1p and search

Z1p

zip :: [a] -> [b] -> [(a,b)]
zip [] ys =[]
zip (x:xs) [] =[]
zip (x:xs) (y:ys) = (X,V)

zip [0,1,2] "abc"
(0,7a’) : zip [1,2] "bc"

(0,7a’) : ((1,’b’) : zip

[2]

Z1p XS yS

"C")

(0,"a”) + ((1,'’b") = ((2,'c") : zip []

(0,7a") « ((L1,"b") =+ ((2,"c") + [1))

[(O, 7a"), (1,"b"), (2,7c")]

Two equivalent definitions of zip

Shorter

zip :: [a]l] —> [b] —> [(a,b)]

zip [] ys =[]

zlp (x:xs) [] = []

zip (x:xs) (y:ys) = (x,y) : zlp Xs yS
Longer

zip :: [a] => [b] => [(a,b)]

zip [[] []

zip [1 (y:ys) []

zip (x:xs) [] []

zip (x:xs) (y:ys) = (x,y) : zlp XS yS

Two alternative definitions of zip

Liberal

zip :: [a]l] —> [b] —> [(a,b)]

zip [1 T[] =[]

zip [] (y:ys) []

zip (x:xs) [] []

zlp (x:xs) (y:ys) = (x,V) Zlp XS ysS
Conservative

zipHarsh :: [a] —-> [b] -> [(a,b)]

zipHarsh [] [] =[]

zilpHarsh (x:xs) (y:ys) = (x,vy) : zipHarsh xs ys

Lists of different lengths

Prelude> zip [0,1,2] "abe"
[(0,"a"), (1,"b"), (2,7c")]

Prelude> zipHarsh [0,1,2] "abc"
[(0,"a"), (1,"b"), (2,7c")]

Prelude> zip [0,1,2] "abcde"
[(0,"a"), (1,"b"), (2,"c")]

Prelude> zipHarsh [0,1,2] "abcde"
error

Prelude> zip [0,1,2,3,4] "abc"
[(O,"a"), (1,"b"), (2,7c")]

Prelude> zipHarsh [0,1,2,3,4] "abc"
error

More fun with zip

Prelude> zip [0..] "words"
[(O,"w"), (1,"0"),(2,"x"),(3,7d"), (4,"s")]

Prelude> let pairs xs = zip xs (tail xs)
Prelude> pairs "words"
[("w","0"), ("o, '), ("x","d"), ("d","s")]

Z1p with an infinite list

zip :: [a] -> [b] -> [(a,b)]

zip [] ys =[]

zip (x:xs) [] =[]

zip (x:xs) (y:ys) = (X,y) : zip XS ysS

Search

Mainx> search "bookshop" ’o’
[1,2,6]

Comprehensions and library functions

search :: [a] —> a —-> [Int]
search xs yv = [1 | (i,x) <- zip [0..] xs,
Recursion
searchRec :: [a] —-> a —> [Int]
searchRec xs y = srch xs y O
where
srch [a] —> a —> Int —-> [Int]
srch [] y i =[]
srch (x:xs) y 1
| x ==y = 1 : srch xs y (i+1)

| otherwise = srch xs y (1i+1)

==Y

How search works (comprehension)

search :: [a] —=> a —> [Int]
search xs yv = [1 | (i,x) <= zip [0..] xs, x==y]

search "book" ‘o’

[1 | (i,x) <— zip [0..] "book", x=='0']

[1 | (1,x) <= [(0,"b"),(1,"0"),(2,"0"),(3,"k")], x=="0"]
[0]’b’=="0"1++[1]|"0’/=="0"]++[2|’0"=="0" 1++[3]| 'k’ =="0"]
[J++[1]++[2]++[]

[1,2]

How search works (recursion)

searchRec xs y = srch xs y 0
where
srch [] y 1 =[]
srch (x:xs) y 1 | X ==y = 1 : srch xs y (1+1)
| otherwise = srch xs y (i+1)

searchRec "book" 7o’

srch "book" "o’ 0

srch "ook" "o’ 1

1 : srch "ok" o' 2
) 1 : (2 : srch "ok" "o’ 3)
) 1 : (2 : srch "" 7o' 4)
_1: (2 = [1)

[1,2]

Part VI

Select, take, and drop

Select, take, and drop

Prelude> "words" !! 3
Id/

Prelude> take 3 "words"
"wor"

Prelude> drop 3 "words"
" dS "

Select, take, and drop (comprehensions)

(') ::: [a] —> Int —> a
xs !'li1i = the [x | (3,x) <= zip [0..] xs, 7 == 1
where
the [x] = X
take :: Int —-> [a] —> [a]
take 1 xs = [x | (3,x) <= zip [0..] xs, J < 1]
drop :: Int -> [a] —-> [a]

drop 1 xs = [x | (j,x) <= zip [0..] xs, J >= 1]

Select, take, and drop (recursion)

(') ::: [a] —> Int —> a

(x:xs) 'O = X

(x:xs) !'!'1 | 1 >0 = xs !l (i1-1)

take :: Int —-> [a] —> [a]

take 0 xs = []

take 1 (x:xs) | 1 > 0 = x : take (1-1)
drop :: Int -> [a] —-> [a]

drop 0 xs = XS

How take works (comprehension)

take :: Int -> [a] —-—> [a]
take 1 xs = [x | (3,x) <= zip [0..] xs, J < i]

take 3 "words"
[x | (3,%x) <= zip [0..] "words", j < 3]

[x [(J,x) <= [(0,"w"),(1,"0"),(2,"c"), (3,"d"), (4,"s")],

["w! |O<3]++["0" |1<3]++["r" |2<3]++["d" |3<3]++["s" |4<3]
[Tw/ J++["0"]J++[" "] ++[]++]]

"WOr"

How take works (recursion)

take :: Int -> [a] —-—> [a]
take 0 xs = []
take n [] | n >0 =[]
take n (x:xs) | n >0 = x : take (n-1) xs
take 3 "words"
"w’ : take 2 "ords"
"wl' ¢ ("o’ : take 1 "rds")
"wl' ¢ ("o" : ('r'" : take 0O "rds"))
IWI (,O, (Irl []))

Lists

Every list can be written using only (:) and [].

[(1,2,31 = 1 (2 :+ (3 : []))

"list™" — [’l’,’i’,’S’,’t’]
— r1r . (’i’ . (ISI . (/t/ . [])>)

A recursive definition: A [ist 1s either
e null, written [], or

e constructed, written x : X s,

with head x (an element), and tail xs (a list).

Natural numbers

Every natural number can be written using only (+1) and 0.

= ((0O + 1) + 1) + 1
A recursive definition: A natural number 1s either
e zero, written O, or

® successor, written n+1

with predecessor n (a natural number).

Select, take, and drop (recursion)

(') :: Int —> [a] —> a

(x:xs) 'O = X

(x:xs) !'!'1 | 1 >0 = xs !l (i1-1)

take :: Int —-> [a] —> [a]

take 0 xs = []

take 1 (x:xs) | 1 > 0 = x : take (1-1)
drop :: Int -> [a] —-> [a]

drop 0 xs = XS

Select, take, and drop (n + 1 patterns)

(') :: Int —> [a] —> a

(x:xs) 'O = X

(x:xs) 'l (1+41) = xs !l 1

take :: Int —-> [a] —> [a]

take 0 xs = []

take (i+1) (x:x8) = x : take 1 xs
drop :: Int -> [a] —-> [a]

drop 0 xs = XS

drop (1+1) (x:xs) = drop 1 xs

How take works, reprise

take :: Int —-> [a] —->
take 0 xs =
take (n+1) I[]

take (n+l1) (x:x8) =

take 3 "words"

take (((0+1)+1)+1)

"w’ : take
) "w’ (" of
] "w’ ("of
) "w’ (" of

((0+1) +

: take

]

[
[
[
X

1) ("o’:

(0+1) ('r’:

("d’:

: take n xs

Arithmetic

(+) Int -> Int —-> Int
m + 0 = m

m + (ntl) = (m + n) + 1
(x) :: Int —> Int —-> Int
m x O = 0

m = (n+1) = (m * n) + m
(") :: Int -> Int —-> Int
m =~ 0 = 1

A

m =~ (n+1) = (m n) = m

