
Informatics 1
Functional Programming Lecture 12

Tuesday 4 November 2008

Binding and lambda calculus

Philip Wadler
University of Edinburgh

Required reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Thompson, Chapters 1–3 (pp. 1–52): by Mon 29 Sep 2008.
Thompson, Chapters 4–5 (pp. 53–95): by Mon 6 Oct 2008.
Thompson, Chapters 6–7 (pp. 96–134): by Mon 13 Oct 2008.
Thompson, Chapters 8–9 (pp. 135–166): by Mon 20 Oct 2008.
Thompson, Chapters 10–11 (pp. 167–209): by Mon 3 Nov 2008.
Thompson, Chapters 12–14 (pp. 210–241): by Mon 10 Nov 2006.

Thompson and other books available in ITO.

Part I

Variables and binding

Variables

x = 2
y = x+1
z = x+y*y

*Main> z
11

Variables—binding

x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—binding

x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—binding

x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—renaming

xavier = 2
yolanda = xavier+1
zeuss = xavier+yolanda*yolanda

*Main> zeuss
11

Part II

Functions and binding

Functions—binding

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Functions—binding

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

There are two unrelated uses of x!

Functions—binding

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—formal and actual parameters

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—formal and actual parameters

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—formal and actual parameters

f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—renaming

fred xavier = george xavier (xavier+1)
george xerox yolanda = xerox+yolanda*yolanda

*Main> fred 2
11

Different uses of x renamed to xavier and xerox.

Part III

Variables in a where clause

Variables in a where clause

f x = z
where
y = x+1
z = x+y*y

*Main> f 2
11

Variables in a where clause—binding

f x = z
where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding

f x = z
where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding

f x = z
where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding

f x = z
where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—hole in scope

f x = z
where
y = x+1
z = x+y*y

y = 5

*Main> y
5

Binding occurrence
Bound occurrence
Scope of binding

Part IV

Functions in a where clause

Functions in a where clause

f x = g (x+1)
where
g y = x+y*y

*Main> f 2
11

Functions in a where clause—binding

f x = g (x+1)
where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variable x is still in scope within g!

Functions in a where clause—binding

f x = g (x+1)
where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—binding

f x = g (x+1)
where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—binding

f x = g (x+1)
where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—hole in scope

f x = g (x+1)
where
g y = x+y*y

g z = z*z*z

*Main> g 2
8

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—pathological case

f x = f (x+1)
where
f y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—pathological case

f x = f (x+1)
where
f y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—formals and actuals

f x = g (x+1)
where
g y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions in a where clause—formals and actuals

f x = g (x+1)
where
g y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Part V

Squares of Positives

Squares of Positives—comprehension

squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Squares of Positives—binding

squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—pathological case

squarePositives :: [Int] -> [Int]
squarePositives x = [x*x | x <- x, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding – Note hole in scope!

Squares of Positives—pathological case

squarePositives :: [Int] -> [Int]
squarePositives x = [x*x | x <- x, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—higher-order functions

squarePositives :: [Int] -> [Int]
squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence
Scope of binding

Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence
Scope of binding

Part VI

Lambda expressions

Squares of Positives—a wrong attempt to simplify

squarePositives :: [Int] -> [Int]
squarePositives xs = map (x*x) (filter (x > 0) xs)

This makes no sense—no binding occurrence of variable!

Squares of Positives—lambda expressions

squarePositives :: [Int] -> [Int]
squarePositives xs =

map (\x -> x*x) (filter (\x -> x > 0) xs)

The character \ stands for λ, the Greek letter lambda

Logicians write (\x -> x*x) as (λx.x× x)

Squares of Positives—lambda expressions

squarePositives :: [Int] -> [Int]
squarePositives xs =

map (\x -> x*x) (filter (\x -> x > 0) xs)

Binding occurrence
Bound occurrence
Scope of binding

Squares of Positives—lambda expressions

squarePositives :: [Int] -> [Int]
squarePositives xs =

map (\x -> x*x) (filter (\x -> x > 0) xs)

Binding occurrence
Bound occurrence
Scope of binding

Evaluating lambda expressions

map (\x -> x*x) [1,2,3]
=

[(\x -> x*x) 1, (\x -> x*x) 2, (\x -> x*x) 3]
=

[1*1, 2*2, 3*3]
=

[1, 4, 9]

The general rule

To apply a function to an argument, substitute the argument for the bound variable:

(λx.N) M

= N [M/x]

Here N [M/x] is the result of substituting term M for each occurrence of variable
x in term N .

For example, if x is y, and N is y*y and M is 2:

(\y -> y*y) 2

= 2*2

Lambda expressions and binding constructs

A variable binding can be rewritten using a lambda expression and an application:

(N where x = M)

= (λx.N) M

= N [M/x]

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where f x = N)

= (M where f = λx.N)

= M [(λx.N)/f]

Lambda expressions and binding constructs

f 2
where
f x = x+y*y

where
y = x+1

=
f 2
where
f = \x -> (x+y*y where y = x+1)

=
f 2
where
f = \x -> ((\y -> x+y*y) (x+1))

=
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Evaluating lambda expressions

(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))
=

(\x -> ((\y -> x+y*y) (x+1))) 2
=

(\y -> 2+y*y) (2+1)
=

(\y -> 2+y*y) 3
=

2+3*3
=

11

Lambda expressions—binding

(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding

(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding

(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—formals and actuals

(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Formal parameter
Actual parameter

Lambda expressions—formals and actuals

(\x -> ((\y -> x+y*y) (x+1))) 2

Formal parameter
Actual parameter

Lambda expressions—formals and actuals

(\y -> 2+y*y) (2+1)

Formal parameter
Actual parameter

Part VII

Sections

Sections

(> 0) is shortand for (\x -> x > 0)

(2 *) is shortand for (\x -> 2 * x)

(+ 1) is shortand for (\x -> x + 1)

(2 ˆ) is shortand for (\x -> 2 ˆ x)

(ˆ 2) is shortand for (\x -> x ˆ 2)

Squares of Positives—sections

squarePositives :: [Int] -> [Int]
squarePositives xs = map (ˆ 2) (filter (> 0) xs)

Part VIII

List comprehensions

List comprehension with two qualifiers

f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

List comprehension with two qualifiers—binding

f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding

f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding

f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

Evaluating a list comprehension

[(i,j) | i <- [1..3], j <- [i..3]]
=

[(1,j) | j <- [1..3]] ++
[(2,j) | j <- [2..3]] ++
[(3,j) | j <- [3..3]]

=
[(1,1),(1,2),(1,3)] ++
[(2,2),(2,3)] ++
[(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Another example

[(i,j) | i <- [1..3], j <- [1..3], i <= j]
=

[(1,j) | j <- [1..3], 1 <= j] ++
[(2,j) | j <- [1..3], 2 <= j] ++
[(3,j) | j <- [1..3], 3 <= j]

=
[(1,1)|1<=1] ++ [(1,2)|1<=2] ++ [(1,3)|1<=3] ++
[(2,1)|2<=1] ++ [(2,2)|2<=2] ++ [(2,3)|2<=3] ++
[(3,1)|3<=1] ++ [(3,2)|3<=2] ++ [(3,3)|3<=3]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Defining list comprehensions

[e | x← l, q] = concat (map (λx. [e | q]) xs)

= l >>= λx. [e | q]

[e | p, q] = if p then [: e | q] else []

= guard p >> [e | q]

[e | •] = [e]

xs >>= f = concat (map f xs)

xs >> ys = concat (map (λx. ys) xs)

guard p = if p then [()] else []

Examples

[x*x | x <- xs]
= xs >>= \x ->

[x*x]

[x*x | x <- xs, x > 0]
= xs >>= \x ->

guard (x > 0) >>
[x*x]

[(i,j) | i <- [1..3], j <- [i..3]]
= [1..3] >>= \i ->

[i..3] >>= \j ->
[(i,j)]

[(i,j) | i <- [1..3], j <- [1..3], i <= j]
= [1..3] >>= \i ->

[1..3] >>= \j ->
guard (i <= j) >>
[(i,j)]

