Informatics 1

Functional Programming Lecture 12
Tuesday 4 November 2008

Binding and lambda calculus

Philip Wadler
University of Edinburgh



Required reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Thompson, Chapters 1-3 (pp. 1-52): by Mon 29 Sep 2008.
Thompson, Chapters 4-5 (pp. 53-95): by Mon 6 Oct 2008.
Thompson, Chapters 67 (pp. 96—134): by Mon 13 Oct 2008.
Thompson, Chapters 8-9 (pp. 135-166): by Mon 20 Oct 2008.
Thompson, Chapters 10—11 (pp. 167-209): by Mon 3 Nov 2008.
Thompson, Chapters 12—14 (pp. 210-241): by Mon 10 Nov 2006.

Thompson and other books available in ITO.



Part 1

Variables and binding



Variables

X = 2
y = x+1
Z = Xty*y

*Main> z
11



Variables—binding

X = 2
y = x+1
Z = Xty*y

*Main> z

11
Binding occurrence
Bound occurrence

Scope of binding



Variables—binding

X = 2
y = x+1
Z = Xty*xy

*Main> 2z
11

Binding occurrence
Bound occurrence

Scope of binding



Variables—binding

X = 2
y = x+1
Z = XtTy*xy

*Main> z

11
Binding occurrence
Bound occurrence
Scope of binding



Variables—renaming

xavier = 2
yolanda = xavier+l
zeuss = xavier+yolandasxyolanda

*Main> zeuss
11



Part 11

Functions and binding



Functions—binding

= g x (x+1)
y = Xty*y

XX

f
g
*Main> f 2
11



Functions—binding

- g x (x+1)
y = Xty*y

-

f
g
*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding



Functions—binding

- g x (x+1)
y = xtyxy

KX

f
g
*Main> f 2

11

Binding occurrence
Bound occurrence

Scope of binding

There are two unrelated uses of x!



Functions—binding

f x =g x (x+1)
g Xy = Xty*y

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding



Functions—binding

- g x (x+1)

f
g Y XTy*y

XX

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding



Functions—binding

- g x (x+1)
y = Xty*y

XX

f
g
*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding



Functions—formal and actual parameters

-

f = g x (x+1)
g y = XTyxy
*Main> f 2

11

Formal parameter

Actual parameter



Functions—formal and actual parameters

- g x (x+1)
y = X+tyry

KX

f
g
*Main> f 2

11

Formal parameter

Actual parameter



Functions—formal and actual parameters

*Main> f 2
11

Formal parameter

Actual parameter



Functions—renaming

fred xavier = george xavier (xavier+l)
george xerox yolanda = xeroxtyolandaxyolanda

*Main> fred 2
11

Different uses of x renamed to xavier and xerox.



Part 111

Variables 1n a where clause



Variables in a where clause

f x =z
where
y = x+1
Z = Xty*y

*Main> f 2
11



Variables in a where clause—binding

f x =2z
where
y = x+1
Z = Xty*y

*Main> £ 2
11

Binding occurrence
Bound occurrence

Scope of binding



Variables in a where clause—binding

f x =z
where
y = x+1
Z = X+ty*xy

*Main> £ 2
11

Binding occurrence
Bound occurrence
Scope of binding



Variables in a where clause—binding

f x =z
where
y = x+1
Z = Xtyx*y

*Main> £ 2
11

Binding occurrence
Bound occurrence

Scope of binding



Variables in a where clause—binding

f x =2z
where
y = x+1
Z = X+ty*y

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding



Variables 1n a where clause—hole 1n scope

where
y = x+1
Z = Xty*y

y = 5
x*Main> vy
5

Binding occurrence
Bound occurrence
Scope of binding



Part IV

Functions 1n a where clause



Functions 1n a where clause

f x =g (x+1)
where
gy = Xty*y

*Main> £ 2
11



Functions 1in a where clause—binding

f x =g (xt1)
where
gy = Xty*y

*Main> £ 2
11

Binding occurrence
Bound occurrence

Scope of binding

Variable x is still in scope within g!



Functions 1in a where clause—binding

f x =g (x+1)
where
gy = Xtyxy

*Main> f 2

11
Binding occurrence
Bound occurrence
Scope of binding



Functions 1in a where clause—binding

f x =g (xt+1)
where
gy = Xty*y

*Main> f 2

11
Binding occurrence
Bound occurrence
Scope of binding



Functions 1in a where clause—binding

f x =g (xt1)
where
gy = Xty*y

*Main> f 2

11
Binding occurrence
Bound occurrence

Scope of binding



Functions in a where clause—hole 1in scope

f x =g (x+t1)
where
gy = Xty*y

g Z = Z*xZ*Z

*Main> g 2

8
Binding occurrence
Bound occurrence

Scope of binding



Functions in a where clause—pathological case

f x = £ (x+1)
where
f vy = xty*y

*Main> f 2

11
Binding occurrence
Bound occurrence

Scope of binding



Functions in a where clause—pathological case

f x = f (x+1)
where
f vy = xty*y

*Main> f 2

11
Binding occurrence
Bound occurrence
Scope of binding



Functions 1n a where clause—formals and actuals

f x =g (xt1)
where
gy = Xty*y

*Main> £ 2
11

Formal parameter

Actual parameter



Functions 1n a where clause—formals and actuals

f x =g (x+1)
where
gy = Xty*y

*Main> £ 2
11

Formal parameter

Actual parameter



Part V

Squares of Positives



Squares of Positives—comprehension

squarePositives :: [Int] -> [Int]
squarePositives xs = [ x*x | x <- x5, x > 0 ]

*Main> squarePositives [1,-2, 3]
[1,9]



Squares of Positives—binding

squarePositives :: [Int] -> [Int]
squarePositives xs = [ x*x | x <= x5, x > 0 ]

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives :: [Int] -> [Int]
squarePositives xs = [ x*x | x <- x5, x > 0 ]

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—ypathological case

squarePositives :: [Int] -> [Int]
squarePositives x = [ x*x | x <- x, x > 0 ]

*Main> squarePositives [1,-2, 3]
[1,9]
Binding occurrence

Bound occurrence
Scope of binding — Note hole in scope!



Squares of Positives—ypathological case

squarePositives :: [Int] -> [Int]
squarePositives x = [ x*x | x <- x, x > 0 ]

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—higher-order functions

squarePositives :: [Int] -> [Int]

squarePositives xs = map square (filter positive xs)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]



Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives xs = map square (filter positive xs3)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square X = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives xs = map square (filter positive Xxs)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence

Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence

Scope of binding



Squares of Positives—binding

squarePositives xs = map square (filter positive xs)
where
square x = X*X
positive x = x > 0

*Main> squarePositives [1,-2, 3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence

Scope of binding



Part VI

Lambda expressions



Squares of Positives—a wrong attempt to simplify

squarePositives :: [Int] -> [Int]
squarePositives xs = map (xxx) (filter (x > 0) xs)

This makes no sense—no binding occurrence of variable!



Squares of Positives—Ilambda expressions

squarePositives :: [Int] -> [Int]
squarePositives xs =
map (\x —> x*x) (filter (\x -> x > 0) xs)

The character \ stands for A, the Greek letter lambda

Logicians write (\x —> x*x) as (Ax.r X x)



Squares of Positives—Ilambda expressions

squarePositives :: [Int] -> [Int]
squarePositives xs =
map (\x -> x*x) (filter (\x -> x > 0) xs)
Binding occurrence
Bound occurrence
Scope of binding



Squares of Positives—Ilambda expressions

squarePositives :: [Int] -> [Int]
squarePositives xs =
map (\x —-> x*x) (filter (\x -> x > 0) xs)

Binding occurrence
Bound occurrence
Scope of binding



Evaluating lambda expressions

map (\X -> x*x) [1,2,3]
[(\X -> x*xx) 1, (\X -> xX*X) 2, (\x —> x*x) 3]

[1x1, 2%2, 3%3]



The general rule

To apply a function to an argument, substitute the argument for the bound variable:
(Ax. N) M
= N[M/x]

Here N|[M /x| is the result of substituting term M for each occurrence of variable

2 1n term V.

For example, if z 1s y, and NV is yxy and M 1s 2:

(\y —> y*y) 2
= 2%2



Lambda expressions and binding constructs

A variable binding can be rewritten using a lambda expression and an application:

(N wherexz = M)
= (M.N)M
= N[M/x]

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where fz = N)
= (M where f = Az.N)
= M[(Az.N)/f]



Lambda expressions and binding constructs

f 2

where

f x = xt+ty*y
where
y = x+1

f 2

where
f = \x —> (x+y*y where y = x+1)

f 2
where
f = \x -> ((\y > x+ty*y) (x+1))

(\f —> £ 2) (\x —> ((\y —> x+y*y) (x+1)))



Evaluating lambda expressions

(\f —> £ 2) (\x —> ((\y —> x+y*y) (x+1)))
(\x —> ((\y —> x+y*y) (x+1))) 2

(\y —> 2+y=*y) (2+1)

(\y —> 2+y=*y) 3

2+3%3

11



Lambda expressions—binding

\E —> £ 2) (\x —> ((\y —> x+y*y) (x+1)))

Binding occurrence
Bound occurrence

Scope of binding



Lambda expressions—binding

(\f —=> £ 2) (\x —> ((\y —> xty*y) (x+1)))

Binding occurrence
Bound occurrence

Scope of binding



Lambda expressions—binding

(\f => £ 2) (\x —> ((\y —> xtyxy) (x+1)))

Binding occurrence
Bound occurrence

Scope of binding



Lambda expressions—formals and actuals

\E —> £ 2) (\x —> ((\y —> xty=*y) (x+1)))

Formal parameter

Actual parameter



Lambda expressions—formals and actuals

\x —> ((\y —> x+ty*y) (x+1))) 2

Formal parameter

Actual parameter



Lambda expressions—formals and actuals

(\y —> 2+y=*y) (2+1)

Formal parameter

Actual parameter



Part VII

Sections



Sections

1s shortand for (\x
1s shortand for (\x
1s shortand for (\x
1s shortand for (\x

1s shortand for (\x



Squares of Positives—sections

squarePositives :: [Int] -> [Int]
squarePositives xs = map (° 2) (filter ( > 0) xs)



Part VIII

List comprehensions



List comprehension with two qualifiers

tn = [ (3,3) | 1 <= [1..n], J <= [1..n] ]

*Main> £ 3
[(1,1),1,2),(1,3),(2,2),(2,3),(3,3)]



List comprehension with two qualifiers—binding

fn = [ (1,3) | 1 <= [1..n], J <= [1..n] ]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
Binding occurrence
Bound occurrence

Scope of binding



List comprehension with two qualifiers—binding

tn = [ (i,3) | £+ <~ [1..n], J <= [Z1..n] ]

*Main> £ 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
Binding occurrence
Bound occurrence

Scope of binding



List comprehension with two qualifiers—binding

f n = [ (1,7) | 1 <= [1l..n], J <= [1..n] ]

+*Main> £ 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
Binding occurrence
Bound occurrence

Scope of binding



Evaluating a list comprehension

[ (1,3) | 1 <= [1..3], J <= [1..3] ]

[ (1, 73) | <= [1..3] 1 ++
[ (2,7) | <- [2..3] ] ++
[ (3,37) | <= [3..3] ]
[(1,1), (1,2), (1,3)] ++
[(2,2), (2,3)] ++

[ (3,3)]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]



Another example

[1--3]1 j<_ [l 3]/ l<:j]
[1..3], 1 <= 73 1 ++
[1..31, 2 <= 7] ] ++
[1..3]1, 3 <= 7 ]
[(1,2)]|1<=2] ++ [(1,3)|1<=3]
[(2,2) |2<=2] ++ [(2,3)]2<=3]
[(3,2) |3<=2] ++ [(3,3)|3<=3]
)] ++ [(1,3)] ++
++ [(2,3)] ++
++ [(3,3)]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]



Defining list comprehensions

le|lxz«— 1, q] = concat (map (Az.|e|q])xs)
= I>>=Xx.[e]|q]

le|p: q] = ifpthen| e|q]else ]
= guardp>>|e|q]

[ele] = |e]
s >>=f = concat (map f zs)
s >>Ys = concat (map (Ax.ys) xs)

guard p = 1if pthen|[()] else |]



Examples

[ X*xX | x <= xs ]
= xs >>= \x —>
[ x*x ]
[ x*x | x <— xs, x > 0 ]

xs >>= \x ->
guard (x > 0) >>
[ X*x ]



