Informatics 1

Functional Programming Lecture 1
Monday 29 September 2008

Functions

Philip Wadler
University of Edinburgh

Any questions?

Tutorial, Labs, Lab week

I'TO will assign you to tutorials, starting next week

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

Drop-in laboratories

Mondays 35pm West
Tuesdays 25pm West
Wednesdays 25pm West
Thursdays 25pm South
Fridays 35pm West

Computer Lab West and South, Appleton Tower, level 5 (not level 4)
Lab Week Exercise due Spm Friday 3 October

Required text and reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1-3 (pp. 1-52): by Mon 29 Sep 2008.
Thompson, Chapters 4-5 (pp. 53-95): by Mon 7 Oct 2008.
Thompson, Chapters 67 (pp. 96—134): by Mon 15 Oct 2008.

Part 1

Introduction

Computational Thinking

“In their capacity as a tool computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge, they are
without precedent in the cultural history of mankind.”

Edsgar Dijkstra, 1930-2002

Research and Technology Jobs at Jane Street

Jane Street Capital is a proprietary trading firm that operates around the clock and around
the world. We bring a deep understanding of trading, a scientific approach, and innovative
technology to bear on the problem of trading profitably on the world's highly-competitive
financial markets. We run a small, nimble operation where technology and trading are tightly
integrated.

At Jane Street, there is room to get deeply involved in a number of areas at the same time.
We are actively looking for people interested in software development, system administration,
and guantitative research--potentially all on the same day.

The ideal candidate has:

® A commitment to the practical. One of the big attractions of our work is the
opportunity to apply serious ideas to real-world problems.

® Experience with functional programming languages (OCaml, SML, Scheme, Haskell,
Lisp, F#, Erlang, etc) is important. Applicants should also have experience with UNDX
and a deep understanding of computers and technology.

® A strong mathematical background. This is a must for candidates interested in
research, and includes a good understanding of probability and statistics, calculus,
algorithms, etc. We draw on ideas from everywhere we can, so we value interest and
experience in a range of scientific fields.

® Good second-order knowledge. In trading, understanding the boundary between what
you do and don't know is as (or more} important than how much you know.

Internet Startup Jobs seedcamFo’

) 1 Seedcamp is a VC funding
PrOJecthPIayfalr competition organised by the

e following VC firms:
S HIGHLAND

CAPITAL PARTNERS =™

>
A dfjesprit

‘websheets that talk to websheets’ @ aﬂasvemTure G
chhmiieds BENCHMARK Ind
Edinburgh-based start-up Project Playfair has won ACCEL c AR 1T AL kuﬁg

the prestigious Seedcamp Venture Capital Start-Up
Competition and is now hiring smart young things.

(These are equity positions). Seedcamp backers have funded:

You will have strong experience in functional

programming (Erlang preferred but not necessary). ,'" .
Skills in the Ubuntu platform (6.06 LTS Dapper Drak COLIABNET ...BOSS
is also desirable. ’ 4*betfair
We are looking for immediate starts and will E T Y SETANTA
consider current students on a part time basis - 20 SPORTS
hours a week. Interviews will be Friday 14th mm& - .

- - W, .
September 7pm in Edinburgh at 34a Howe St Mysol

R bitTorrent

To apply phone Gordon 07776 251669 ‘ redhat TROLLTECH

Why learn Haskell?

e Important to learn many languages over your career
e Learn to operate on data structures all at once rather than a piece a time

e Puts experienced and inexperienced programmers on a more equal footing

What 1s Haskell?

A functional programming language

Pure

Lazy

Uses type classes

For use in education, research, and industry
Designed by a committee

Recently celebrated its 20’th birthday

“A History of Haskell: being lazy with class”, Paul Hudak (Yale
University), John Hughes (Chalmers University), Simon Peyton Jones
(Microsoft Research), Philip Wadler (Edinburgh University), The Third
ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), San Diego, California, June 9-10, 2007.

Families of programming languages

e Functional (Erlang, F#, Haskell, Hope, Javascript, Miranda, O’Caml, Scala,
Scheme, SML)

— More powerful
— More compact programs
e Object-oriented (C++, F#, Java, Javascript, O’Caml, Perl, Python, Ruby,
Scala)
— More widely used

— More libraries

Functional programming in the real world

e Google MapReduce, Sawzall
e Ericsson AXE phone switch
e Jane Street Capital

e Credit Suisse

e Morgan Stanley

e Perl 6

e DARCS

e XMonad

e Yahoo

o Twitter

e Garbage collection

o F#

Functional programming is the next next thing

Features from functional languages are appearing in other languages
e Garbage collection (Java, C#, Python, Perl, Ruby, Javascript)
e Higher-order functions (Java, C#, Python, Perl, Ruby, Javascript)
e Generics (Java, C#)
e List comprehensions (C#, Python, Perl 6, Javascript)

e Type classes (C++ “concepts”)

Part 11

Functions

What 1s a function?

e A recipe for generating an output from inputs:
“Multiply a number by itself”

e A set of (input, output) pairs:
(1,1) (2,4) 3,9) (4,16) (5,25) ...

e A graph relating inputs to output (for numbers only):

Kinds of data

e Integers: 42, —69
e Floats: 3.14
e Characters: ' h’

e Strings: "hello"

e Pictures: 1

Applying a function

invert :: Picture —> Picture
knight :: Picture

invert knight

> invert

Composing functions

beside Picture -> Picture —> Picture
flipV :: Picture —-> Picture

invert :: Picture —-> Picture

knight :: Picture

beside (invert knight) (flipV knight)

invert

beside

flipV

Defining a new function

double :: Picture —> Picture
double p = Dbeside (invert p) (flipV p)

double knight

double

invert

‘ flipV

[

Defining a new function

double :: Picture —-> Picture
double p = Dbeside (invert p) (flipV p)

double knight

double

Terminology

Type signature

makePicture :: Picture -> Picture

Function declaration

makeP}cture p = sideBySide (invert p) (flipV p)

function name function body

Terminology

formal parameter actual parameter

makePicture 5 = sideBySide (invert p) (flipV p)

[
makePicture knight

function definition expression

