
Informatics 1
Functional Programming Lecture 1

Monday 29 September 2008

Functions

Philip Wadler
University of Edinburgh

Any questions?

Tutorial, Labs, Lab week

ITO will assign you to tutorials, starting next week

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

Drop-in laboratories

Mondays 35pm West

Tuesdays 25pm West

Wednesdays 25pm West

Thursdays 25pm South

Fridays 35pm West

Computer Lab West and South, Appleton Tower, level 5 (not level 4)

Lab Week Exercise due 5pm Friday 3 October

Required text and reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1–3 (pp. 1–52): by Mon 29 Sep 2008.
Thompson, Chapters 4–5 (pp. 53–95): by Mon 7 Oct 2008.
Thompson, Chapters 6–7 (pp. 96–134): by Mon 15 Oct 2008.

Part I

Introduction

Computational Thinking

“In their capacity as a tool computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge, they are
without precedent in the cultural history of mankind.”

Edsgar Dijkstra, 1930–2002

Why learn Haskell?

• Important to learn many languages over your career

• Learn to operate on data structures all at once rather than a piece a time

• Puts experienced and inexperienced programmers on a more equal footing

What is Haskell?

• A functional programming language

• Pure

• Lazy

• Uses type classes

• For use in education, research, and industry

• Designed by a committee

• Recently celebrated its 20’th birthday

“A History of Haskell: being lazy with class”, Paul Hudak (Yale
University), John Hughes (Chalmers University), Simon Peyton Jones
(Microsoft Research), Philip Wadler (Edinburgh University), The Third
ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), San Diego, California, June 9–10, 2007.

Families of programming languages

• Functional (Erlang, F#, Haskell, Hope, Javascript, Miranda, O’Caml, Scala,
Scheme, SML)

– More powerful

– More compact programs

• Object-oriented (C++, F#, Java, Javascript, O’Caml, Perl, Python, Ruby,
Scala)

– More widely used

– More libraries

Functional programming in the real world

• Google MapReduce, Sawzall

• Ericsson AXE phone switch

• Jane Street Capital

• Credit Suisse

• Morgan Stanley

• Perl 6

• DARCS

• XMonad

• Yahoo

• Twitter

• Garbage collection

• F#

Functional programming is the next next thing

Features from functional languages are appearing in other languages

• Garbage collection (Java, C#, Python, Perl, Ruby, Javascript)

• Higher-order functions (Java, C#, Python, Perl, Ruby, Javascript)

• Generics (Java, C#)

• List comprehensions (C#, Python, Perl 6, Javascript)

• Type classes (C++ “concepts”)

Part II

Functions

What is a function?

• A recipe for generating an output from inputs:
“Multiply a number by itself”

• A set of (input, output) pairs:
(1,1) (2,4) (3,9) (4,16) (5,25) ...

• A graph relating inputs to output (for numbers only):

Kinds of data

• Integers: 42, -69

• Floats: 3.14

• Characters: ’h’

• Strings: "hello"

• Pictures:

Applying a function

invert :: Picture -> Picture
knight :: Picture

invert knight

invert

Composing functions

beside :: Picture -> Picture -> Picture
flipV :: Picture -> Picture
invert :: Picture -> Picture
knight :: Picture

beside (invert knight) (flipV knight)

invert

flipV

beside

Defining a new function

double :: Picture -> Picture
double p = beside (invert p) (flipV p)

double knight

invert

flipV

beside

double

Defining a new function

double :: Picture -> Picture
double p = beside (invert p) (flipV p)

double knight

double

Terminology

Type signature

Function declaration

makePicture :: Picture -> Picture

makePicture p = sideBySide (invert p) (flipV p)

function name function body

Terminology

makePicture knight

formal parameter actual parameter

expression

makePicture p = sideBySide (invert p) (flipV p)

function definition

