
http://www.inf.ed.ac.uk/teaching/courses/inf1/da

Informatics 1: Data & Analysis
Lecture 6: Tuple Relational Calculus

Ian Stark

School of Informatics
The University of Edinburgh

Friday 31 January 2014
Semester 2 Week 3

http://www.inf.ed.ac.uk/teaching/courses/inf1/da
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Careers Event Next Week !

Careers in IT
Job Fair

Wednesday 5 February 2014

Informatics Forum
1300–1600

http://is.gd/it_careers

Careers advice and stalls from 35+ local, national
and international employers

Ian Stark Inf1-DA / Lecture 6 2014-01-31

http://is.gd/it_careers

Lecture Plan for Weeks 1–4

Data Representation
This first course section starts by presenting two common data
representation models.

The entity-relationship (ER) model
The relational model Note slightly different naming:

-relationship vs. relational

Data Manipulation
This is followed by some methods for manipulating data in the relational
model and using it to extract information.

Relational algebra
The tuple-relational calculus
The query language SQL

Ian Stark Inf1-DA / Lecture 6 2014-01-31

The State We’re In

Relational models
Relations: Tables matching schemas
Schema: A set of field names and their domains
Table: A set of tuples of values for these fields

Student
mn name age email

s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

Course
code title year
inf1 Informatics 1 1

math1 Mathematics 1 1
geo1 Geology 1 1
dbs Database Systems 3
adbs Advanced Databases 4

Takes
mn code mark

s0456782 inf1 71
s0412375 geo1 64
s0412375 math1 82
s0189034 math1 56

Ian Stark Inf1-DA / Lecture 6 2014-01-31

The State We’re In

Relational algebra
A mathematical language of bulk operations on relational tables. Each
operation takes one or more tables, and returns another.

selection σ, projection π, renaming ρ, union ∪, difference −,
cross-product ×, intersection ∩ and different kinds of join ./

Tuple relational calculus (TRC)
A declarative mathematical notation for writing queries: specifying
information to be drawn from the linked tables of a relational model.

Structured Query Language (SQL)
A mostly-declarative programming language for interacting with relational
database management systems (RDBMS): defining tables, changing data,
writing queries. International Standard ISO 9075

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Tuple Relational Calculus: Example

All records for students more than 19 years old

{ S | S ∈ Student ∧ S.age > 19 }

The set of tuples S such that S is in the table “Student” and has
component “age” greater than 19.

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Tuple Relational Calculus: Example

All records for students more than 19 years old

{ S | S ∈ Student ∧ S.age > 19 }

The set of tuples S such that S is in the table “Student” and has
component “age” greater than 19.

Student
mn name age email

s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Tuple Relational Calculus: Example

All records for students more than 19 years old

{ S | S ∈ Student ∧ S.age > 19 }

The set of tuples S such that S is in the table “Student” and has
component “age” greater than 19.

Student
mn name age email

s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Tuple Relational Calculus: Example

All records for students more than 19 years old

{ S | S ∈ Student ∧ S.age > 19 }

The set of tuples S such that S is in the table “Student” and has
component “age” greater than 19.

This is like list comprehension in programming languages:

Haskell [s | s <− students, age s > 19]

Python [s for s in students if s.age > 19]

All are based on “comprehensions” in set theory

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Tuple Relational Calculus Basics

Queries in TRC have the general form

{ T | P(T) }

where T is a tuple variable and P(T) is a predicate, a logical formula.

Every tuple variable such as T has a schema, listing its fields and their
domains. In practice, the details of the schema are usually inferred from
the way T is used in the predicate P(T).

A tuple variable ranges over all possible tuple values matching its schema.

The result of the query
{ T | P(T) }

is then the set of all possible tuple values for T such that P(T) is true.

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Another Example

Names and ages of all students over 19

{ T | ∃S . S ∈ Student ∧ S.age > 19
∧ T .name = S.name ∧ T .age = S.age }

The set of tuples T such that there is a tuple S in table “Student” with
field “age” greater than 19 and where S and T have the same values for
“name” and “age”.

Student
mn name age email

s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

T

name age
Helen 20
Peter 22

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Another Example

Names and ages of all students over 19

{ T | ∃S . S ∈ Student ∧ S.age > 19
∧ T .name = S.name ∧ T .age = S.age }

The set of tuples T such that there is a tuple S in table “Student” with
field “age” greater than 19 and where S and T have the same values for
“name” and “age”.

Tuple variable S has schema matching the table “Student”.
Tuple variable T has fields “name” and “age”, with domains to match
those of S.
Even if S has other fields, they do not appear in T or the overall result.

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Formula Syntax

Inside TRC expression { T | P(T) } the logical formula P(T) may be quite
long, but is built up from standard logical components.

Simple assertions: (T ∈ Table), (T .age > 65), (S.name = T .name), . . .

Logical combinations: (P ∨Q), (P ∧Q∧ ¬Q ′), . . .

Quantification:

∃S . P(S) There exists a tuple S such that P(S)
∀T . Q(T) For all tuples T it is true that Q(T)

For convenience, we require that for ∃S . P(S) the variable S must actually
appear in P(S); and the same for ∀T . Q(T). We also write:

∃S ∈ Table . P(S) to mean ∃S . S ∈ Table∧ P(S)

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Students and Courses

Student
mn name age email

s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

Course
code title year
inf1 Informatics 1 1

math1 Mathematics 1 1
geo1 Geology 1 1
dbs Database Systems 3
adbs Advanced Databases 4

Takes
mn code mark

s0456782 inf1 71
s0412375 geo1 64
s0412375 math1 82
s0189034 math1 56

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Students and Courses (1/5)

Students taking Geology 1

{ R | ∃S ∈ Student . ∃T ∈ Takes . ∃C ∈ Course .
C.title = "Geology 1" ∧ C.code = T .code
∧ T .mn = S.mn ∧ S.name = R.name }

Schema for S, T and C match those of the tables from which they are
drawn. The schema for result R is a single field “name” with string
domain, because that’s all that appears here.

One way to compute this in relational algebra:

πname((Student ./ Takes) ./ (σtitle="Geology 1"(Course)))

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Relational Algebra
The relational algebra expression can be rearranged without changing its
value, but possibly affecting the time and memory needed for computation:

πname((Student ./ Takes) ./ (σtitle="Geology 1"(Course)))
πname(Student ./ (Takes ./ (σtitle="Geology 1"(Course))))
πname(Student ./ ((σtitle="Geology 1"(Course)) ./ Takes))

We can also visualise this as rearrangements of a tree:

π

./

./

Student Takes

σ

Course

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Relational Algebra
The relational algebra expression can be rearranged without changing its
value, but possibly affecting the time and memory needed for computation:

πname((Student ./ Takes) ./ (σtitle="Geology 1"(Course)))
πname(Student ./ (Takes ./ (σtitle="Geology 1"(Course))))
πname(Student ./ ((σtitle="Geology 1"(Course)) ./ Takes))

We can also visualise this as rearrangements of a tree:

π

./

Student ./

Takes σ

Course
Ian Stark Inf1-DA / Lecture 6 2014-01-31

Relational Algebra
The relational algebra expression can be rearranged without changing its
value, but possibly affecting the time and memory needed for computation:

πname((Student ./ Takes) ./ (σtitle="Geology 1"(Course)))
πname(Student ./ (Takes ./ (σtitle="Geology 1"(Course))))
πname(Student ./ ((σtitle="Geology 1"(Course)) ./ Takes))

We can also visualise this as rearrangements of a tree:

π

./

Student ./

σ

Course

Takes

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Students and Courses (2/5)

Courses taken by students called “Joe”

{ R | ∃S ∈ Student, T ∈ Takes,C ∈ Course .
S.name = "Joe" ∧ S.mn = T .mn
∧ C.code = T .code ∧ C.title = R.title }

Note the slightly abbreviated syntax for multiple quantification: we use
comma-separated ∃.., .., .. instead of ∃..∃..∃..

Computing this in relational algebra:

πtitle((Course ./ Takes) ./ (σname="Joe"(Student)))

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Students and Courses (3/5)

Students taking Informatics 1 or Geology 1

{ R | ∃S ∈ Student, T ∈ Takes,C ∈ Course .
(C.title = "Informatics 1"∨ C.title = "Geology 1")
∧ C.code = T .code ∧ T .mn = S.mn ∧ S.name = R.name }

Now the logical formula becomes a little more elaborate.

Computing this in relational algebra:

πname((Student ./ Takes) ./ (σtitle="Informatics 1"(Course)))
∪ πname((Student ./ Takes) ./ (σtitle="Geology 1"(Course)))

πname((Student ./ Takes) ./ (σ(title="Informatics 1"∨title="Geology 1")(Course)))
Ian Stark Inf1-DA / Lecture 6 2014-01-31

Students and Courses (4/5)

Students taking both Informatics 1 and Geology 1

{ R | ∃S ∈ Student, T , T ′ ∈ Takes,C,C ′ ∈ Course .
C.title = "Informatics 1" ∧ C.code = T .code ∧ T .mn = S.mn
C ′.title = "Geology 1" ∧ C ′.code = T ′.code ∧ T ′.mn = S.mn
∧ S.name = R.name }

Computing this in relational algebra:

πname((Student ./ Takes) ./ (σtitle="Informatics 1"(Course)))
∩ πname((Student ./ Takes) ./ (σtitle="Geology 1"(Course)))

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Students and Courses (5/5)

Students taking no courses

{ R | ∃S ∈ Student . S.name = R.name ∧ ∀T ∈ Takes . T .mn 6= S.mn

Computing this in relational algebra:

πname(Student− πname,mn,age,email(Student ./ Takes))

? Challenge: why not one of these instead?

πname(Student− (Student ./ Takes))

πname(Student) − πname(Student ./ Takes))

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Relational Algebra vs. Tuple Relational Calculus

Codd gave a proof that relational algebra and TRC are equally expressive:
anything expressed in one language can also be written in the other.

So why have both?

They give different perspectives and allow the following approach:

Use relational calculus to specify the information wanted;
Translate into relational algebra to give a procedure for computing it;
Rearrange the algebra to make that procedure efficient.

The database language SQL is based on the calculus: well-suited to giving
logical specifications, independent of any eventual implementation.

The algebra beneath it is good for rewriting, equations, and calculation.

Ian Stark Inf1-DA / Lecture 6 2014-01-31

Query Optimization

... Rearrange the algebra to make that procedure efficient.

This last part is central to the viability of modern large databases. An
effective query optimizer will draw up a list of possible query plans and
compare the costs of all of them, taking account of:

How much data there is, where it is, how it is arranged;
What indexes are available, for which tables, and where they are;
Selectivity: estimates of how many rows a subquery will return;
Estimated size of any intermediate tables;
What parts can be done in parallel;
What I/O and computing resources are available;
. . .

Ian Stark Inf1-DA / Lecture 6 2014-01-31

