
http://www.inf.ed.ac.uk/teaching/courses/inf1/da

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Informatics 1: Data & Analysis
Lecture 9: Trees and XML

Ian Stark

School of Informatics
The University of Edinburgh

Tuesday 12 February 2013
Semester 2 Week 5

http://www.inf.ed.ac.uk/teaching/courses/inf1/da
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk




Lecture Plan

XML
We start with technologies for modelling and querying semistructured data.

Semistructured Data: Trees and XML
Schemas for structuring XML
Navigating and querying XML with XPath

Corpora
One particular kind of semistructured data is large bodies of written or
spoken text: each one a corpus, plural corpora.

Corpora: What they are and how to build them
Applications: corpus analysis and data extraction

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Lecture Plan

XML
We start with technologies for modelling and querying semistructured data.

Semistructured Data: Trees and XML
Schemas for structuring XML
Navigating and querying XML with XPath

Corpora
One particular kind of semistructured data is large bodies of written or
spoken text: each one a corpus, plural corpora.

Corpora: What they are and how to build them
Applications: corpus analysis and data extraction

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Reading Around the Subject
For a very brief summary and sales pitch, read this short introduction:

World Wide Web Consortium (W3C).
XML Essentials
http://www.w3.org/standards/xml/core, W3C 2010.

Ramakrishnan and Gehrke’s database book briefly introduces XML in §7.4:

R. Ramakrishnan and J. Gehrke.
Database Management Systems.
McGraw-Hill, third edition, 2003.

For a more comprehensive introduction, see Chapter 2 of:

A. Møller and M. I. Schwartzbach.
An Introduction to XML and Web Technologies.
Addison-Wesley, 2006.

There are multiple copies in the Main Library HUB section.
Ian Stark Inf1-DA / Lecture 9 2013-02-12

http://www.w3.org/standards/xml/core
http://pages.cs.wisc.edu/~dbbook/
http://www.brics.dk/ixwt/


There’s More to Life than Structured Data

Relational databases record data in tables conforming to fixed schemas,
satisfying various constraints about uniqueness and cross-referencing.

That can usefully capture real-world constraints in a way which supports
automatic validation and efficient querying.

However it can also be helpful in some situations to structure data in a
less rigid way. For example:

When the data has no strong inherent structure; or there is structure,
but it varies from item to item;
When we wish to mark up (annotate) existing unstructured data (say,
English text) with additional information (e.g. linguistic structure, or
meaning);
When the structure of the data changes over time, perhaps as more
data accumulates.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Trees

Often this kind of semistructured data is modelled using trees.

These are mathematical trees, not vegetation. You can recognise them by
the fact that they grow branches downwards from a root at the top.

Nature notes
A tree is a set of linked nodes, with a single root node.
Each node is linked to a set of zero or more children, also nodes in
the tree.
Every node has exactly one parent, except for the root node which
has none.
A node with no children is a leaf; other nodes are internal.
Two nodes with a common parent are sibling nodes.

Trees contain no loops, and from each node there is always exactly one
route back up to the root.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Know Your Trees

Root node Leaves and internal nodes

Parent of A Children of A

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Semistructured Data Models
There are several tree-like data models used with semistructured data.
We shall work with the XPath data model, developed for semistructured
data represented using XML (of which more shortly).
The next slide shows an example of data structured according to the XPath
data model, with a fragment of a geographical directory or gazetteer.

Wikipedia: NuclearVacuum

Ian Stark Inf1-DA / Lecture 9 2013-02-12

https://en.wikipedia.org/wiki/File:EU-Slovenia.svg
https://en.wikipedia.org/wiki/File:General_map_of_slovenia.svg
https://commons.wikimedia.org/wiki/User:NuclearVacuum


Sample Semistructured Data

Ian Stark Inf1-DA / Lecture 9 2013-02-12



XPath Node Types

Root Node: This is the root of the tree, labelled / .

Element Nodes: These are labelled with element names, categorising the
data below them. In this example the element names are: Gazetteer,
Country, Name, Population, Capital, Region, and Feature.
In the XPath data model, internal nodes other than the root are
always element nodes.
The root node must have exactly one element node as child, called
the root element. Here the root element is Gazetteer.

Text Nodes: Leaves of the tree storing textual information. In this
example there are text nodes with strings "Slovenia", "2,020,000",
"Ljubljana", "Gorenjska", "Triglav", "Bohinj" and "Spik".

Attribute Nodes: . . .

Ian Stark Inf1-DA / Lecture 9 2013-02-12



More XPath Node Types

Attribute Nodes: Leaves of the tree assigning a value to some attribute of
an element node.

In the example, we use the @ symbol to identify attributes. In this
case we see a single attribute type, associated with the Feature
element, which is assigned the text values "Lake" and "Mountain".

In the XPath data model, attribute nodes are treated differently
from other node types. For example, although the parent of an
attribute node is an element node, when we talk about the children
of this parent node we generally don’t include the attribute nodes.

One aim of the XPath model, and the XML language, is that data should
be self-describing: lots of the data in these trees is there to give
information about the meaning of other data. People argue about this

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Understanding an XPath Data Tree

In a tree like this, the meaning of data at a text node depends on all the
element nodes that appear along the path from the root of the tree to the
text node, and on the values of their associated attributes.

We usually write these paths with a / separator, beginning at the root.
For example, the path to the text node containing "Bohinj" is

/Gazetteer/Country/Region/Feature/

and the value of the type attribute of the associated Feature element is
"Lake". This tells us that Bohinj is a feature in a region in a country in the
gazetteer, and that the type of feature is a lake.

Note that to get further information (such as the name of the country,
Slovenia), we would need to follow another path from the relevant
ancestor element (in this case, the Country element).

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Understanding an XPath Data Tree

In a similar way the meaning of an element node depends on the path to
that node from the root of the tree.

For example, in the gazetteer a Name element node is used in two
different ways:

A path /Gazetteer/Country/Name/ leads to a text node containing
the name of a country.
A path /Gazetteer/Country/Region/Name/ leads to a text node
containing the name of a region.

All of this structure in an XPath data tree can be written out in plain text
using the Extensible Markup Language XML.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



XML: Extensible Markup Language

XML is formal language for presenting the kind of semistructured data we
have just seen. It is a markup language in that it provides a way to mark
up ordinary text with additional information.

XML was developed in the 1990’s building on the Standard General
Markup Language SGML and the Hypertext Markup Language HTML. It
aimed to be simpler than SGML, but more general than HTML.

XML has a simple text-based format which is suitable for
machine-to-machine communication, by automatically generating and
parsing data files, as well as being moderately human-readable.

(Compare, for example, Abstract Syntax Notation One)

XML has become the standard mechanism for publishing data on the web.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



There’s a lot of it about

The “extensible” part of XML means it can be applied to all kinds of
semistructured data, with customised versions for any number of
application domains. For example, all of the following are based on XML:

XHTML for web pages
SVG for scalable vector graphics
OOXML for Microsoft Office documents .docx, .pptx, .xlsx
GLADE for GTK+ user interface descriptions
GML, the Geography Markup Language
MusicXML for musical scores
FpML, the Financial Products Markup Language

Homework: Find an SVG file, and look at its XML content.
Advanced: Find a .docx file, and look at its XML content.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Sample Semistructured Data in XML

<Gazetteer>
<Country>

<Name>Slovenia</Name>
<Population>2,020,000</Population>
<Capital>Ljubljana</Capital>
<Region>

<Name>Gorenjska</Name>
<Feature type="Lake">Bohinj</Feature>
<Feature type="Mountain">Triglav</Feature>
<Feature type="Mountain">Spik</Feature>

</Region>
</Country>
<!−− data for other countries here −−>

</Gazetteer>

Ian Stark Inf1-DA / Lecture 9 2013-02-12



XML Elements

The building blocks of XML documents are elements, also called tags.

The content of a thing element is marked with a start tag <thing> at the
beginning and an end tag </thing> at the end.

Elements must be properly nested. For example:

<Country><Region> ... </Region></Country>

is acceptable XML, whereas

<Country><Region> ... </Country></Region>

is not.

Elements in XML are case sensitive, so <REGION> is different from
<Region> and <region>.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Content of XML Elements

Each element in an XML document has content:

The content of the Capital element
<Capital>Ljubljana</Capital>

is the text string "Ljubljana".

The Region element above has as content one Name element
together with three Feature elements.

The root element Gazetteer has the whole document as content.

An element may possibly have empty content: <thing></thing>.
This can be abbreviated by the single hybrid tag: <thing/>.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Attributes for XML Elements

Any element can have descriptive attributes which provide additional
information about the element. For example:

<Feature type="Mountain"> ... </Feature>

declares that the attribute type of the given Feature element has value
Mountain.

Attribute values are always enclosed in either single or double quotation
marks.

A single element may have multiple different attributes, each with its own
value declared in the element start tag:

<thing attr1="value1" attr2="value2" ... > ... </thing>

In designing an XML representation for semistructured data, there is
sometimes a tension between putting information in the content of an
element, or as one of its attributes.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Matching XML with the Tree Model

Every XML document naturally represents a tree structure in the XPath
data model:

Each XML element corresponds to an element node of the tree.

The XML root element corresponds to the root element of the tree
(the one below the root node).

The text content of an individual XML element corresponds to a child
text node of the corresponding element node in the tree.

An attribute definition in an element’s start tag corresponds to a child
attribute node of the corresponding element node in the tree.

Of course, this correspondence is there because the data model was
designed that way.

Ian Stark Inf1-DA / Lecture 9 2013-02-12



Other XMLicities

XML files can contain comments <!−− almost anything here −−>. The
full XPath data model also has comment nodes.

Well-formed XML documents should all begin with a declaration
something like

<?xml version="1.0" encoding="UTF−8"?>

Both XML and the data model allow for all kinds of processing instruction
nodes also written <?...?>.

Because XML documents are plain text files, there are some unexpected
consequences in the tree structure:

Order of children matters
Whitespace sometimes matters but in ways too horrible to describe.

Ian Stark Inf1-DA / Lecture 9 2013-02-12


