Informatics 1: Data & Analysis

Lecture 16: Vector Spaces for Information Retrieval

lan Stark

School of Informatics
The University of Edinburgh

Tuesday 19 March 2013
Semester 2 Week 9

http://www.inf.ed.ac.uk/teaching/courses/infl/da

http://www.inf.ed.ac.uk/teaching/courses/inf1/da
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Coursework Submission

The coursework assignment has now been online for some time.. This runs
alongside your usual tutorial exercises; ask tutors for help with it where
you have specific questions.

The assignment is a Inf1-DA examination paper from 2011. Your tutor will
give you marks and feedback on your work in the last tutorial of semester.

How to submit your work

Submit your solutions on paper to the labelled box outside the ITO office
on level 4 of Appleton Tower by 4pm Thursday 21 March 2013. Please
ensure that all sheets you submit are firmly stapled together, and on the
first page write your name, matriculation number, tutor name and tutorial

group.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Late Coursework and Extension Requests

There is a web page with general information about coursework,
assessment and feedback in the School of Informatics. Please read it.

http://www.inf.ed.ac.uk/teaching/coursework.html

This also links to the School policy on late coursework and extension
requests. Please read that too.

Late Submissions

Normally, you will not be allowed to submit coursework late. Coursework
submitted after the deadline set will receive a mark of 0%.

If you have a good reason to need to submit late, you must do the
following:

@ Read the extension requests web page carefully.

@ Request an extension identifying the affected course and assignment.

@ Submit the request via the ITO contact form.

lan Stark Inf1-DA / Lecture 16 2013-03-19

http://www.inf.ed.ac.uk/teaching/coursework.html
http://www.inf.ed.ac.uk/student-services/teaching-organisation/for-taught-students/coursework-and-projects/late-coursework-submission
http://www.inf.ed.ac.uk/teaching/contact

Unstructured Data

Data Retrieval

@ The information retrieval problem

@ The vector space model for retrieving and ranking

Statistical Analysis of Data

@ Data scales and summary statistics
@ Hypothesis testing and correlation

] X2 tests and collocations also chi-squared, pronounced “kye-squared”

lan Stark Inf1-DA / Lecture 16 2013-03-19

Unstructured Data

Data Retrieval

@ The information retrieval problem

@ The vector space model for retrieving and ranking

Statistical Analysis of Data

@ Data scales and summary statistics
@ Hypothesis testing and correlation

] X2 tests and collocations also chi-squared, pronounced “kye-squared”

lan Stark Inf1-DA / Lecture 16 2013-03-19

Possible Query Types for Information Retrieval

We shall consider simple keyword queries, where we ask an IR system to:

@ Find documents containing one or more of wordy, word, ..., wordy,

More sophisticated systems might support queries like:

@ Find documents containing all of wordy, wordb, ..., wordy;

e Find documents containing as many of wordy, word, ..., word, as
possible.

Other systems go beyond these forms to more complex queries: using
boolean operations, searching for whole phrases, regular expression
matches, etc.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Models for Information Retrieval

If we look for all documents containing some words of the query then this
may result in a large number of documents of widely varying relevance.

At this point we might want to refine retrieval beyond simple
selection/rejection and introduce some notion of ranking.

Introducing more refined queries, and in particular ranking the results,
requires a model of the documents being retrieved.

There are many such models. We focus on the vector space model.

This model is the basis of many IR applications; it originated in the work
of Gerard Salton and others in the 1970’s, and is still actively developed.

lan Stark Inf1-DA / Lecture 16 2013-03-19

The Vector Space Model

Treat documents as vectors in a high-dimensional space, with one
dimension for every distinct word.

Applying this to ranking of retrieved documents:

@ Each document is a vector;

@ Treat the query (a very short document) as a vector too;

@ Match documents to the query by the angle between the vectors.

@ Rank higher those documents which point in the same direction as
the query.

Operating the model does not, in fact, require a strong understanding of
higher-dimensional vector spaces: all we do is manipulate fixed-length lists
of integers.

Various programming languages provide a vector

datatype for fixed-length homogeneous sequences

lan Stark Inf1-DA / Lecture 16 2013-03-19

The Vector for a Document

Suppose that wy, wa, ..., wy are all the different words occurring in a
collection of documents D1, Do, ..., Dx.

We model each document D; by an n-dimensional vector
(ci1,¢i2,, - -+, Ciji-- -, Cin)

where cy; is the number of times word w; occurs in document Dj.

In the same way we model the query as a vector (qi1,...,qn) by

considering it as a document itself: q; counts how many times word wj
occurs in the query.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Example

Consider a small document containing only the phrase
Sun, sun, sun, here it comes

from a document collection which contains only the words “comes”,

LT

“here”, “it”, “sun” and "today".

The vector for the document is (1,1,1, 3,0):

comes here it sun today
L1 1 fif3f o |

The vector for the query “sun today” is (0,0,0,1, 1):

comes here it sun today
Lo [ofof1] 1 |

lan Stark Inf1-DA / Lecture 16 2013-03-19

Document Matrix

For an information retrieval system based on the vector space model,
frequency information for words in a document collection is usually
precompiled into a document matrix:

@ Each column represents a word that appears the document collection;
@ Each row represents a single document in the collection;
@ Each entry in the matrix gives the frequency of that word in that

document.

This is a model in that it captures some aspects of the documents in the

collection — enough to carry out certain queries or comparisons — but
ignores others.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Example Document Matrix

w1 Wz W3 Wn
D; |14 6 1 0
D, | 0 1 3 1
Dz | 0 1 O 2
Dkl 4 7 O 5

Note that each row of the document matrix is the appropriate vector for
the corresponding document.

lan Stark

Inf1-DA / Lecture 16

2013-03-19

Origins of the Vector Space Model

The following paper was never written.

[G. Salton.
A Vector Space Model for Information Retrieval.
Communications of the ACM, 1975.

OR: Journal of the American Society for Information Science, 1975.
OR: None of the above.

This paper explains the story.

[§ D. Dubin.
The most influential paper Gerard Salton never wrote.
Library Trends 52(4):748-764, 2004

lan Stark Inf1-DA / Lecture 16 2013-03-19

http://www.thefreelibrary.com/The most influential paper Gerard Salton never wrote.-a0125151308

Similarity of Vectors

Now that we have documents modelled as vectors, we can rank them by
how closely they align with the query, also modelled as a vector.

A simple measure of how well these match is the angle between them as
(high-dimensional) vectors: smaller angle means more similarity.

Using angle makes this measure independent of document size.

It turns out to be computationally simpler to calculate the cosine of that
angle; this is more efficient, and gives exactly the same ranking.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Cosines (Some Things You Already Know)

The cosine of an angle A is

adjacent
A)= ———
cos(A) hypotenuse

for a right-angled triangle with angle A.

Some particular values of cosine:
cos(0) =1 cos(90°) =0 cos(180°) = —1

The cosine of the angle between two vectors will be 1 if they are parallel, 0
if they are orthogonal, and —1 if they are antiparallel.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Scalar Product of Vectors

Suppose we have two n-dimensional vectors X and y:

%:(le---yx‘ﬂ.) g:(ylvvyn)

We can calculate the cosine of the angle between them as follows:

RGN n
X - S XiUs
COS(%, —») _ _ Zlfl 1Yi

Y
Xl \/Z{l:l X%\/Z?:l y?

Here X - | is the scalar product or dot product of the vectors X and ¢y, with
IX| and [§| the length or norm of vectors X and g, respectively.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Example

Matching the document “Sun, sun, sun, here it comes” against the query
“sun today” we have:

Xx=1(1,1,1,3,0) §=1(0,0,0,1,1)
For this we can calculate:

G=040+0+3+0=3

Kl=vVI+1+1+9+0=+12

G =vV0+0+0+1+1=+2
3 3

cos(X, §) = ﬁx\f T =0.61

to two significant figures. (The actual angle between the vectors is 52°.)

lan Stark Inf1-DA / Lecture 16 2013-03-19

Ranking Documents

Suppose § is a query vector, with document vectors 51, D}, c D_)K
making up the document matrix.

We calculate the K cosine similarity values:
cos(q,D1) cos(d,D2) ... cos(q,Dx)
We can then sort these: rating documents with the highest cosine

against g as the best match, and those with the lowest cosine values the
least suitable.

Because all document vectors are positive — no word occurs a negative
number of times — the cosine similarity values will all be between 0 and 1.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Discussion

The cosine similarity measure, as presented here, has some evident
limitations.

@ It only uses the frequency of individual words, not their position or
ordering in relation to each other.

@ It treats equally all words in the document collection, including both

very common “stop” words and very uncommon words unrelated to
the search.

@ It does not make any connection between closely related words, like

sun”, “sunny” and “sunshine”.
@ It takes no account of document size.
Nonetheless, more refined variations of cosine and other similar

measurements based on the vector space model continue to be popular
and effective in information retrieval, text mining, and clustering analysis.

lan Stark Inf1-DA / Lecture 16 2013-03-19

Some Other Issues Around Information Retrieval

Precision and recall, as defined in this course, only evaluate a fixed set of
documents returned, without taking into account any ranking. More
sophisticated measures such as precision at a cutoff address this.

We have not considered the efficient implementation of the search for
documents matching a query (or, indeed, any implementation). One
method is an inverted index which indexes documents in a collection using
all individual words as keys.

Information retrieval and ranking methods may also make use of
information beyond the document itself. This might be metadata on the
source and history of a document, or how other documents reference it
(citations). For example, Google's pagerank algorithm selects and ranks
web pages based on their own content and the content (and ranking) of all
pages which link to them.

lan Stark Inf1-DA / Lecture 16 2013-03-19

