
Informatics 1: Data & Analysis
Session 2012–2013, Semester 2

Coursework Assignment Student Notes

The coursework assignment for Inf1-DA 2012–2013 is the resit examination paper from Au-
gust 2011. These are notes for students on the course, to help you review your work on the
assignment, and with comments based on scripts submitted in the actual resit examination.
Although these notes contains information about solutions, they are not necessarily model an-
swers. They are provided as guidance to assess your own answers, not always to dictate what
is “the” answer.

If you find an error in these notes, please email me Ian.Stark@ed.ac.uk

Thank you for your participation in Informatics 1 this year. Ian Stark
2013-03-24

1

http://www.inf.ed.ac.uk/teaching/courses/inf1/da/2012-2013/
http://www.inf.ed.ac.uk/teaching/courses/inf1/da/2012-2013/
mailto:Ian.Stark@ed.ac.uk


1. (a) Here is a suitable entity-relationship diagram.

Attends Happens in

E-mailName

Participant Room

Floor Number Capacity

Workshop

Day

Date

Name

Happens on

One incorrect alternative is to assign a “date” attribute to workshops: the question
specifically mentions multiple-day workshops.

As well as the entities and relationships, it’s important to include the underlined
primary keys — notice the composite key of Floor and Number for rooms — the thick
lines of two participation constraints for Workshop in Happens in and Happens on, and
the arrowhead of a key constraint for Workshop in Happens on.

(b) (i) A key is a minimal set of attributes whose values uniquely identify an item in
an entity set. For example, the e-mail address of a participant is a key for the
corresponding entity set.

(ii) A composite key is a key that includes more than one attribute. For example,
the floor and room number of a meeting room.

(iii) Total participation is a requirement that every element of an entity set must
appear at least once in a particular relationship. For example, the requirements
that every workshop must happen on at least one date, and in some meeting
room.

(iv) A key constraint is a requirement that each element of an entity set may appear
at most once in a particular relationship. For example, the requirement that
every workshop must be allocated no more than one room, even if it runs for
more than one day.

A total participation constraint is shown by a thick line joining the participating
entity to the relationship. A key constraint is shown by an arrowhead on the line
joining the entity to the relationship.

(c) (i) Two of these are readily presented in an ER diagram: the requirement for work-
shop organisers, and for every participant to register for at least one workshop.
Making sure that no participant registers for two workshops on the same day is
much harder to incorporate within an ER diagram, and might be better done
as a dynamic check when people make their registrations.

(ii) Here are suitable modifications to the ER diagram.

2



E-mailName

Participant

E-mailName

Participant

Workshop

Name

Workshop

Name

Attends

Attends

Organiser

Recording organisers requires an additional relationship, with both a partici-
pation and a key constraint; requiring participants to be registered for at least
one workshop can be represented as a participation constraint on the existing
Attends relationship.

3



2. (a) Here is the XPath tree model.

/

university

school

The School of Informatics http://www.inf.ed.ac.uk

BSc Artificial Intelligence MSc Computer Science

@type=undergraduate @type=postgraduate

@code=UTAINTL @code=PTMSCCMPSI1F

degree degree

namename

name website

Notice that the following are all distinct: leaves with general text; internal nodes
with their type; and attributes with a type and value.

(b) The following is a suitable DTD.

<!DOCTYPE university [
<!ELEMENT university (school+) >
<!ELEMENT school (name,website,degree+) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT website (#PCDATA) >
<!ELEMENT degree (name) >
<!ATTLIST degree

type (undergraduate|postgraduate) #REQUIRED
code CDATA #REQUIRED >

]>

Some small variations are possible. For example: the ATTLIST might be split into
two statements rather than one; and elements could use ∗ rather than +, allowing
for empty lists of schools or degrees.

(c) (i) //school/name/text()
Not //name/text(), which will get both school and degree names.

(ii) //degree[@type=’undergraduate’]/name/text()

(iii) //school[degree/@type=’postgraduate’]/website/text() or
//degree[@type=’postgraduate’]/../website/text()

Again, various alternatives are possible: naming every node on the path rather than
using the descendant axis “//”; more use of the parent axis “ ..”; or even long-form
queries rather than the standard abbreviations.

(d) Here is an example SQL data declaration for the two tables, which captures the
information from the XML document.

create table Schools (
name varchar(80),
website varchar(80),
primary key (name)

)

4



create table Degrees (
name varchar(80),
type varchar(20),
code varchar(20),
school varchar(80),
primary key (code),
foreign key (school) references Schools (name) on delete cascade

)

Variations are possible: all sorts of possible field lengths, where anything reasonable
will do; and anything could reasonably be labelled not null. Some things, however,
are vital: for example, the foreign key reference between Degrees and School.

Notice the on delete cascade declaration, which indicates that if the entry for a
school is deleted, its associated degrees should also be removed.

(e) (i) SELECT name FROM Schools

(ii) SELECT name FROM Degrees WHERE type = ”undergraduate”

(iii) SELECT S.website FROM Degrees D, Schools S
WHERE D.type = ”postgraduate”AND D.school = S.name

5



3. (a) The information retrieval task is to find those documents relevant to a user query
from among some large collection of documents.

For example, searching for previous legal rulings relevant to a certain topic from a
judicial archive. The judicial archive is the document collection; the query is some
words related to the topic; and the previous rulings are the relevant documents to
be retrieved.

Another example might be to search for recipes in a user-contributed online repos-
itory. The online repository is the document collection; the query is some words,
perhaps ingredients or the name of a dish; and the recipes are the relevant documents
to be retrieved.

Any appropriate example will do.

(b) Precision records what proportion of the documents retrieved do in fact match the
query; recall is the proportion of relevant documents in the collection which are
successfully retrieved.

(c) • TP is True Positives, the number of relevant documents correctly returned.

• FP is False Positives, the number of irrelevant documents returned.

• FN is False Negatives, the number of relevant documents incorrectly rejected.

It’s important to answer the question precisely here: give both the name and defi-
nition in each case.

(d) These tables set out the performance results for each retrieval system, and the cal-
culation required for precision and recall of both.

X Relevant Not relevant Total
Retrieved 40 360 400

Not retrieved 10 1090 1100
Total 50 1450 1500

Y Relevant Not relevant Total
Retrieved 15 15 30

Not retrieved 35 1435 1470
Total 50 1450 1500

System X precision P =
40

400
= 0.1 System Y precision P =

15

30
= 0.5

System X recall R =
40

50
= 0.8 System Y recall R =

15

50
= 0.3

(e) Here is the standard formula defining F-score.

Fα =
1

α 1
P

+ (1− α) 1
R

(f) For the retrieval of legal judgements, recall is of particular importance (you really
don’t want to miss anything), so value of α below 0.5, say 0.2, might be appropriate.

For a recipe website, precision seems likely more important than recall — there may
be far more recipes on any topic than you need to see, but any returned should match
the query as well as possible. A value of α above 0.5, say 0.9, might be appropriate.

If you have a different example, the value and justification should fit that. This
could include the harmonic mean at 0.5 if that’s appropriate.

6


