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Unstructured data — examples

• Plain (unannotated) text

There is structure, the sequence of characters, but this is intrinsic to the
data, not imposed.
We may wish to impose structure by, e.g., annotating (as in Part II).

• Bitmaps for graphics or pictures, digitized sound, digitized movies, etc.

These again have intrinsic structure (e.g., picture dimensions).
We may wish to impose structure by, e.g., recognising objects, isolating
single instruments from music, etc.

• Experimental results.

Here there may be structure in how represented (e.g., collection of
points in n-dimensional space).
But an important objective is to uncover implicit structure (e.g.,
confirm or refute an experimental hypothesis).
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Topics

We consider two topics in dealing with unstructured data.

1. Information retrieval

How to find data of intrest in within a collection of unstructured data
documents.

2. Statistical analysis of data

How to use statistics to identify and extract properties from
unstructured data (e.g., general trends, correlations between different
components, etc.)
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Information Retrieval

The Information retrieval (IR) task: given a query, find the documents in a
given collection that are relevant to it.

Assumptions:

1. There is a large document collection being searched.

2. The user has a need for particular information, formulated in terms of a
query (typically keywords).

3. The task is to find all and only the documents relevant to the query.

Example: Searching a library catalogue. Document collection to be
searched: books and journals in library collection. Information needed: user
specifies query giving details about author, title, subject or similar. Search
program returns a list of (potentially) relevant matches.
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Key issues for IR

Specification issues:

• Evaluation: How to measure the performance of an IR system.

• Query type: How to formulate queries to an IR system.

• Retrieval model: How to find the best-matching document, and how to
rank them in order of relevance.

Implementation issues:

• Indexing: how to represent the documents searched by the system so
that the search can be done efficiently.

The goal of this lecture is to look at the three specification issues in more
detail.
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Evaluation of IR

The performance of an IR system is naturally evaluated in terms of two
measures:

• Precision: What proportion of the documents returned by the system
match the original objectives of the search.

• Recall: What proportion of the documents matching the objectives of
the search are returned by the system.

We call documents matching the objectives of the search relevant
documents.
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True/false positives/negatives

Relevant Non-relevant

Retrieved true positives false positives

Not retrieved false negatives true negatives

• True positives (TP): number of relevant documents that the system
retrieved.

• False positives (FP): number of non-relevant documents that the
system retrieved.

• True negatives (TN): number of non-relevant documents that the
system did not retrieve.

• False negatives (FN): number of relevant documents that the system
did not retrieve.
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Defining precision and recall

Relevant Non-relevant

Retrieved true positives false positives

Not retrieved false negatives true negatives

Precision

P =
TP

TP + FP

Recall

R =
TP

TP + FN
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Comparing 2 IR systems — example

Document collection with 130 documents.
28 documents relevant for a given theory.

System 1: retrieves 25 documents, 16 of which are relevant
TP1 = 16, FP1 = 25 − 16 = 9, FN1 = 28 − 16 = 12

P1 =
TP1

TP1 + FP1

=
16

25
= 0.64 R1 =

TP1

TP1 + FN1

=
16

28
= 0.57

System 2: retrieves 15 documents, 12 of which are relevant
TP2 = 12, FP2 = 15 − 12 = 3, FN2 = 28 − 12 = 16

P2 =
TP2

TP2 + FP2

=
12

15
= 0.80 R2 =

TP2

TP2 + FN2

=
12

28
= 0.43

N.B. System 2 has higher precision. System 1 has higher recall.
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Precision versus Recall

A system has to achieve both high precision and recall to perform well. It
doesn’t make sense to look at only one of the figures:

• If system returns all documents in the collection: 100% recall, but low
precision.

• If system returns only one document, which is relevant: 100%
precision, but low recall.

Precision-recall tradeoff: System can optimize precision at the cost of
recall, or increase recall at the cost of precision.

Whether precision or recall is more important depends on the application of
the system.
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F-score

The F-score is an evaluation measure that combines precision and recall.

Fα =
1

α 1
P

+ (1 − α) 1
R

Here α is a weighting factor with 0 ≤ α ≤ 1.

High α means precision more important. Low α means recall is more
important.

Often α = 0.5 is used, giving the harmonic mean of P and R:

F0.5 =
2PR

P + R
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Using F-score to compare — example

We compare the examples on slide III: 10 using the F-score (with
α = 0.5).

F0.5(System1) =
2P1R1

P1 + R1

=
2 × 0.64 × 0.57

0.64 + 0.57
= 0.60

F0.5(System2) =
2P2R2

P2 + R2

=
2 × 0.80 × 0.43

0.80 + 0.43
= 0.56

The F-score (with this weighting) rates System 1 as better than System 2.
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Query type

We shall only consider simple queries of the form:

• Find documents containing word1, word2, . . . , wordn

More specific tasks are:

• Find documents containing all the words word1, word2 . . . wordn;

• or find documents containing as many of the words word1, word2
. . . wordn as possible.

In real-world applications, queries can be much more complex than this
(e.g., they can be combined using boolean operations, one can search for
substrings of words or whole phrases, one can match regular expressions,
etc.).
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A retrieval model

If all documents containing all words of the query are returned this might
result in a large number of varying relevance (at least if the document
collection is large and the query general).

IR systems need to rank documents according to likely relevance.

There are many such ranking methods.

We focus on one, which uses the vector space model.

This model is the basis of many IR applications.

In this course, we shall only use it in one particularly simple way.
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The vector space model

Core ideas:

• Treat documents as points in a high-dimensional vector space, based on
words in the document collection.

• The query is treated in the same way.

• The documents are ranked according to document-query similarity.

N.B. You do not need to know anything about vector spaces to understand
the approach!
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The vector associated to a document

Suppose Term1, Term2, . . . , Termn are all the different words occurring in
the entire collection of documents Doc1, Doc2, . . . , DocN .

Each document, Doci, is assigned an n-valued vector:

(mi1, mi2, . . . , min)

where mij is the number of times word Termj occurs in document Doci.

Similarly, the query is assigned an n-valued vector by considering it as a
document itself.
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Example

Consider the document

Sun, sun, sun, here it comes

and suppose the only words in the document collection are: comes, here, it,
sun.

The vector for the document is (1, 1, 1, 3)

comes here it sun

1 1 1 3

Similarly, the vector for the query sun comes is (1, 0, 0, 1)
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Document matrix

The frequency information for words in the document collection is normally
precompiled in a document matrix.

This has:

• Columns represent the words appearing the document collection

• Rows represent each document in the collection.

• each entry in the matrix represents the frequency of the word in the
document.
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Document matrix — example

Term1 Term2 Term3 ... Termn

Doc1 14 6 1 ... 0

Doc2 0 1 3 ... 1

Doc3 0 1 0 ... 2

... ... ... ... ... ...

DocN 4 7 0 ... 5

N.B. Each row gives the vector for the associated document.
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Vector similarity

We want to rank documents according to relevance to the query.

We implement this by defining a measure of similarity between vectors.

The idea is that the most relevant documents are those whose vectors are
most similar to the query vector.

Many different similarity measures are used. A simple one that is
conceptually appealing and enjoys some good properties is the cosine of the
angle between two vectors.
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Cosines (from school trigonometry)

Recall that the cosine of an angle θ is:

adjacent

hypotenuse

in a right-angled triangle with angle θ.

Crucial properties:

cos(0) = 1 cos(90◦) = 0 cos(180◦) = −1

More generally, two n-dimensional vectors will have cosine: 1 if they are
identical, 0 if they are orthogonal, and −1 if they point in opposite
directions.

The value cos(x) always lies in the range from −1 to 1.
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Vector cosines

Suppose ~x and ~y are n-value vectors:

~x = (x1, . . . , xn) ~y = (y1, . . . , yn)

Their cosine (that is, the cosine of the angle between them) is calculated by:

cos(~x, ~y) =
~x · ~y

|~x||~y|
=

∑n
i=1 xiyi√∑n

i=1 x2
i

√∑n
i=1 y2

i
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Vector cosines — example

Continuing the example from slide 11.18, suppose:

~x = (1, 1, 1, 3) ~y = (1, 0, 0, 1)

Then:

~x · ~y = 1 + 0 + 0 + 3 = 4

|~x| =
√

1 + 1 + 1 + 9 =
√

12

|~y| =
√

1 + 0 + 0 + 1 =
√

2

So

cos(~x, ~y) =
4

√
12 ×

√
2

=
2

√
6

= 0.82

to two decimal places.

Part III: Unstructured Data III.1: Unstructured data and data retrieval



Inf1, Data & Analysis, 2010 III: 25 / 88

Ranking documents

Suppose ~y is the query vector, and ~x1, . . . , ~xN are the N document
vectors.

We calculate the N values:

cos( ~x1, ~y), . . . , cos( ~xN , ~y)

The documents are then ordered so that those with the highest cosine values
are counted as most suitable, and those with the lowest cosine values are
counted as least suitable.

N.B. On this slide ~x1, . . . , ~xN are N (potentially) different vectors, each
with n values.
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Discussion of cosine measure

The cosine similarity measure, as discussed here, is very crude.

• It only takes word frequency into account

• It takes all words in the document collection into account (whether very
common “stop” words which are useless for IR, or very uncommon
words unrelated to the search)

• All words in the document collection are weighted equally

• It ignores document size (just the angles between vectors not their
magnitude are considered)

Nevertheless, the cosine method can be refined in various ways to avoid
these problems. (This is beyond the scope of this course.)
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Other issues

• Precision and recall, as defined, only evaluate the set of documents
returned, they do not take ranking into account. Other more complex
evaluation measures can be introduced to deal with ranking (e.g.,
precision at a cutoff ).

• We have not considered the efficient implementation of the search for
documents matching a query. This is often addressed using a
purpose-built index such as an inverted index which indexes all
documents using the words in the document collection as keys.

• Often useful ranking methods make use of information extraneous to
the document itself. E.g., Google’s pagerank method evaluates
documents according to their degree of connectivity with the rest of the
web (e.g., number of links to page from other pages).

These are important issues, but are beyond the scope of this course.
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Analysis of data

There are many reasons to analyse data.

Two common goals of analysis:

• Discover implicit structure in the data.

E.g., find patterns in empirical data (such as experimental data).

• Confirm or refute a hypothesis about the data.

E.g., confirm or refute an experimental hypothesis.

Statistics provides a powerful and ubiquitous toolkit for performing such
analyses.
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Data scales

The type of analysis performed (obviously) depends on:

• The reason for wishing to carry out the analysis.

• The type of data to hand.

For example, the data may be quantitative (i.e., numerical), or it may be
qualitative (i.e., descriptive).

One important aspect of the kind of data is the form of data scale it belongs
to:

• Categorical (also called nominal) and Ordinal scales (for qualitative
data).

• Interval and ratio scales (for quantitative data).

This affects the ways in which we can manipulate data.
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Categorical scales

Data belongs to a categorical scale if each datum (i.e., data item ) is
classified as belonging to one of a fixed number categories.

Example: The British Government (presumably) classifies Visa
applications according to the nationality of the applicant. This classification
is a categorical scale: the categories are the different possible nationalities.

Example: Insurance companies classify some insurance applications (e.g.,
home, possessions, car) according to the postcode of the applicant (since
different postcodes have different risk assessments).

Categorical scales are sometimes called nominal scales, especially in cases
in which the value of a datum is a name.
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Ordinal scales

Data belongs to an ordinal scale if it has an associated ordering but
arithmetic transformations on the data are not meaningful.

Example: The Beaufort wind force scale classifies wind speeds on a scale
from 0 (calm) to 12 (hurricane). This has an obvious associated ordering,
but it does not make sense to perform arithmetic operations on this scale.
E.g., it does not make much sense to say that scale 6 (strong breeze) is the
average of calm and hurricane force.

Example: In many institutions, exam marks are recorded as grades (e.g.,
A,B,. . . , G) rather than as marks. Again the ordering is clear, but one does
not perform arithmetic operations on the scale.
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Interval scales

An interval scale is a numerical scale (usually with real number values) in
which we are interested in relative value rather than absolute value.

Example: Points in time are given relative to an arbitrarily chosen zero
point. We can make sense of comparisons such as: moment x is 2009 years
later than moment y. But it does not make sense to say: moment x is twice
as large as moment z.

Mathematically, interval scales support the operations of subtraction
(returning a real number for this) and weighted average.

Interval scales do not support the operations of addition and multiplication.
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Ratio scales

A ratio scale is a numerical scale (again usually with real number values) in
which there is a notion of absolute value.

Example: Most physical quantities such as mass, energy and length are
measured on ratio scales. So is temperature if measured in kelvins (i.e.
relative to absolute zero).

Like interval scales, ratio scales support the operations of subtraction and
weighted average. They also support the operations of addition and of
multiplication by a real number.

Question for physics students: Is time a ratio scale if one uses the Big Bang
as its zero point?
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Visualising data

It is often helpful to visualise data by drawing a chart or plotting a graph of
the data.

Visualisations can help us guess properties of the data, whose existence we
can then explore mathematically using statistical tools.

For a collection of data of a categorical or ordinal scale, a natural visual
representation is a histogram (or bar chart), which, for each category,
displays the number of occurrences of the category in the data.

For a collection of data from an interval or ratio scale, one plots a graph
with the data scale as the x-axis and the frequency as the y-axis.

It is very common for such a graph to take a bell-shaped appearence.
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Normal distribution

In a normal distribution, the data is clustered symmetrically around a
central value (zero in the graph below), and takes the bell-shaped
appearance below.
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Normal distribution (continued)

There are two crucial values associated with the normal distribution.

The mean, µ, is the central value around which the data is clustered. In the
example, we have µ = 0.

The standard deviation, σ, is the distance from the mean to the point at
which the curve changes from being convex to being concave. In the
example, we have σ = 1. The larger the standard deviation, the larger the
spread of data.

The general equation for a normal distribution is

y = c e− (x−µ)2

2σ2

(You do not need to remember this formula.)
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Statistic(s)

A statistic is a (usually numerical) value that captures some property of
data.

For example, the mean of a normal distribution is a statistic that captures the
value around which the data is clustered.

Similarly, the standard deviation of a normal distribution is a statistic that
captures the degree of spread of the data around its mean.

The notion of mean and standard deviation generalise to data that is not
normally distributed.

There are also other, mode and median, which are alternatives to the mean
for capturing the “focal point” of data.
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Mode

Summary statistics summarise a property of a data set in a single value.

Given data values x1, x2, . . . , xN , the mode (or modes) is the value (or
values) x that occurs most often in x1, x2, . . . , xN .

Example: Given data: 6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, the mode is 6, which is
the only value to occur three times.

The mode makes sense for all types of data scale. However, it is not
particularly informative for real-number-valued quantitative data, where it is
unlikely for the same data value to occur more than once.
(This is an instance of a more general phenomenon. In many circumstances,
it is neither useful nor meaningful to compare real-number values for
equality.)
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Median

Given data values x1, x2, . . . , xN , written in non-decreasing order, the
median is the middle value x

( N+1
2 )

assuming N is odd. If N is even, then
any data value between x( N

2 ) and x( N
2 +1) inclusive is a possible median.

Example: Given data: 6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, we write this in
non-decreasing order:

1, 1, 2, 2, 3, 5, 5, 6, 6, 6, 7

The middle value is the sixth value 5.

The median makes sense for ordinal data and for interval and ratio data. It
does not make sense for categorical data, because categorical data has no
associated order.
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Mean

Given data values x1, x2, . . . , xN , the mean µ is the value:

µ =

∑N
i=1 xi

N

Example: Given data: 6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, the mean is

6 + 2 + 3 + 6 + 1 + 5 + 1 + 7 + 2 + 5 + 6

11
= 4.

Although the formula for the mean involves a sum, the mean makes sense
for both interval and ratio scales. The reason it makes sense for data on an
interval scale is that interval scales support weighted averages, and a mean
is simply an equally-weighted average (all weights are set as 1

N
).

The mean does not make sense for categorical and ordinal data.
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Variance and standard deviation

Given data values x1, x2, . . . , xN , with mean µ, the variance, written
Var or σ2, is the value:

Var =

∑N
i=1(xi − µ)2

N

The standard deviation, written σ, is defined by:

σ =
√

Var =

√∑N
i=1(xi − µ)2

N

Like the mean, the standard deviation makes sense for both interval and
ratio data. (The values that are squared are real numbers, so, even with
interval data, there is no issue about performing the multiplication.)
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Variance and standard deviation (example)

Given data: 6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, we have µ = 4.

Var =
22 + 22 + 12 + 22 + 32 + 12 + 32 + 32 + 22 + 12 + 22

11

=
4 + 4 + 1 + 4 + 9 + 1 + 9 + 9 + 4 + 1 + 4

11

=
50

11
= 4.55 (to 2 decimal places)

σ =

√
50

11

= 2.13 (to 2 decimal places)
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Populations and samples

The discussion of statistics so far has been all about computing various
statistics for a given set of data.

Very often, however, one is interested in knowing the value of the statistic
for a whole population from which our data is just a sample.

Examples:

• Experiments in social sciences where one wants to discover some
general property of a section of the population (e.g., teenagers).

• Surveys (e.g., marketing surveys, opinion polls, etc.).

• In software design, understanding requirements of users, based on
questioning a sample of potential users.

In such cases it is totally impracticable to obtain exhaustive data about the
population as a whole. So we are forced to obtain data about a sample.
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Sampling

There are important guidelines to follow in choosing a sample from a
population.

• The sample should be chosen randomly from the population.

• The sample should be as large as is practically possible (given
constraints on gathering data, storing data and calculating with data).

These two guidelines are designed to improve the likelihood that the sample
is representative of the population. In particular, they minimise the chance
of accidentally building a bias into the sample.

Given a sample, one calculates statistical properties of the sample, and uses
these to infer likely statistical properties of the whole population.

Important topics in statistics (beyond the scope of D&A) are maximising
and quantifying the reliability of such techniques.

Part III: Unstructured Data III.2: Data scales and summary statistics



Inf1, Data & Analysis, 2010 III: 46 / 88

Estimating statistics for a population given a sample

Tyically one has a (hopefully representative) sample x1, . . . , xn from a
population of size N where n << N (i.e., n is much smaller that N ).

We use the sample x1, . . . , xn to estimate statistical values for the whole
population.

Sometimes the calculation is the expected one, sometimes it isn’t.

The best estimate m of the mean µ of the population is:

m =

∑n
i=1 xi

n

As expected, this is just the mean of the sample.

Part III: Unstructured Data III.2: Data scales and summary statistics



Inf1, Data & Analysis, 2010 III: 47 / 88

Estimating variance and standard deviation of population

To estimate the variance of the population, calculate∑n
i=1(xi − m)2

n − 1

The best estimate s of the standard deviation σ of the population, is:

s =

√∑n
i=1(xi − m)2

n − 1

N.B. These values are not simply the variance and standard deviation of the
sample. In both cases, the expected denominator of n has been replaced by
n − 1. This gives a better estimate in general when n << N .
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Caution

The use of samples to estimate statistics of populations is so common that
the formula on the previous slide is very often the one needed when
calculating standard deviations.

Its usage is so widespread that sometimes it is wrongly given as the
definition of standard deviation.

The existence of two different formulas for calculating the standard
deviation in different circumstances can lead to confusion. So one needs to
take care.

Sometimes calculators make both formulas available via two buttons: σn

for the formula with denominator n; and σn−1 for the formula with
denominator n − 1.
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Further reading

There are many, many, many books on statistics. Two very gentle books,
intended mainly for social science students, are:

P. Hinton
Statistics Explained
Routledge, London, 1995

First Steps in Statistics
D. B. Wright
SAGE publications, 2002

These are good for the formula-shy reader.

Two entertaining books (the first a classic, the second rather recent), full of
examples of how statistics are often misused in practice, are:

D. Huff
How to Lie with Statistics
Victor Gollancz, 1954

M. Blastland and A. Dilnot
The Tiger That Isn’t
Profile Books, 2008
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Several variables

Often, one wants to relate data in several variables (i.e., multi-dimensional
data).

For example, the table below tabulates, for eight students (A–H), their
weekly time (in hours) spent: studying for Data & Analysis, drinking and
eating. This is juxtaposed with their Data & Analysis exam results.

A B C D E F G H

Study 0.5 1 1.4 1.2 2.2 2.4 3 3.5

Drinking 25 20 22 10 14 5 2 4

Eating 4 7 4.5 5 8 3.5 6 5

Exam 16 35 42 45 60 72 85 95

Thus, we have four variables: study, drinking, eating and exam.
(This is four-dimensional data.)
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Correlation

We can ask if there is any relationship between the values taken by two
variables.

If there is no relationship, then the variables are said to be independent.
If there is a relationship, then the variables are said to be correlated.

Caution: A correlation does not imply a causal relationship between one
variable and another. For example, there is a positive correlation between
incidences of lung cancer and time spent watching television, but neither
causes the other.

However, in cases in which there is a causal relationship between two
variables, then there often will be an associated correlation between the
variables.
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Visualising correlations

One way of discovering correlations is to visualise the data.

A simple visual guide is to draw a scatter plot using one variable for the
x-axis and one for the y-axis.

Example: In the example data on Slide III: 51, is there a correlation
between study hours and exam results? What about between drinking hours
and exam results? What about eating and exam results?
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Studying vs. exam results

This looks like a positive correlation.
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Drinking vs. exam results

This looks like a negative correlation.
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Eating vs. exam results

There is no obvious correlation.
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Statistical hypothesis testing

The last three slides use data visualisation as a tool for postulating
hypotheses about data.

One might also postulate hypotheses for other reasons, e.g.: intuition that a
hypothesis may be true; a perceived analogy with another situation in which
a similar hypothesis is known to be valid; existence of a theoretical model
that makes a prediction; etc.

Statistics provides the tools needed to corroborate or refute such hypotheses
with scientific rigour: statistical tests.
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The general form of a statistical test

One applies an appropriately chosen statistical test to the data and calculates
the result R.

Statistical tests are usually based on a null hypothesis that there is nothing
out of the ordinary about the data.

The result R of the test has an associated probability value p.

The value p represents the probability that we would obtain a result similar
to R if the null hypothesis were true.

N.B., p is not the probability that the null hypothesis is true. This is not a
quantifiable value.
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The general form of a statistical test (continued)

The value p represents the probability that we would obtain a result similar
to R if the null hypothesis were true.

If the value of p is significantly small then we conclude that the null
hypothesis is a poor explanation for our data. Thus we reject the null
hypothesis, and replace it with a better explanation for our data.

Standard significance thresholds are to require p < 0.05 (i.e., there is a
less than 1/20 chance that we would have obtained our test result were the
null hypothesis true) or, better, p < 0.01 (i.e., there is a less than 1/100
chance)
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Correlation coefficient

The correlation coefficient is a statistical measure of how closely the data
values x1, . . . , xN are correlated with y1, . . . , yN .

Let µx and σx be the mean and standard deviation of the x values.
Let µy and σy be the mean and standard deviation of the y values.

The corelation coefficient ρx,y is defined by:

ρx,y =

∑N
i=1(xi − µx)(yi − µy)

Nσxσy

If ρx,y is positive this suggests x, y are positively correlated.
If ρx,y is negative this suggests x, y are negatively correlated.
If ρx,y is close to 0 this suggests there is no correlation.
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Correlation coefficient as a statistical test

In a test for correlation between two variables x, y (e.g., exam result and
study hours), we are looking for a correlation and a direction for the
correlation (either negative or positive) between the variables.

The null hypothesis is that there is no correlation.

We calculate the correlation coefficient ρx,y .

We then look up significance in a critical values table for the correlation
coefficient. Such tables can be found in statistics books (and on the Web).
This gives us the associated probability value p.

The value of p tells us whether we have significant grounds for rejecting the
null hypothesis, in which case our better explanation is that there is a
correlation.
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Critical values table for the correlation coefficient

The table has rows for N values and columns for p values.

N p = 0.1 p = 0.05 p = 0.01 p = 0.001

7 0.669 0.754 0.875 0.951

8 0.621 0.707 0.834 0.925

9 0.582 0.666 0.798 0.898

The table shows that for N = 8 a value of |ρx,y| > 0.834 has probability
p < 0.01 of occurring (that is less than a 1/100 chance of occurring) if
the null hypothesis is true.

Similarly, for N = 8 a value of |ρx,y| > 0.925 has probability
p < 0.001 of occurring (that is less than a 1/1000 chance of occurring) if
the null hypothesis is true.
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Studying vs. exam results

We use the data from III: 51 (see also III: 54), with the study values for
x1, . . . , xN , and the exam values for y1, . . . , yN , where N = 8.

The relevant statistics are:

µx = 1.9 σx = 0.981

µy = 56.25 σy = 24.979

ρx,y = 0.985

Our value of 0.985 is (much) higher than the critical value 0.925. Thus we
reject the null hypothesis with very high confidence (p < 0.001) and
conclude that there is a correlation.

It is a positive correlation since ρx,y is positive not negative.
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Drinking vs. exam results

We now use the drinking values from III: 51 (see also III: 55) as the values
for x1, . . . , x8. (The y values are unchanged.)

The new statistics are:

µx = 12.75 σx = 8.288 ρx,y = −0.914

Since | − 0.914| = 0.914 > 0.834, we can reject the null hypothesis
with confidence (p < 0.01). This result is still significant though less so
than the previous.

This time, the value −0.914 of ρx,y is negative so we conclude that there
is a negative correlation
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Estimating correlation from a sample

As on slides III: 46–47, assume samples x1, . . . , xn and y1, . . . , yn from
a population of size N where n << N .

Let mx and my be the estimates of the means of the x and y values (V: 46)
Let sx and sy be the estimates of the standard deviations (V: 47)

The best estimate rx,y of the correlation coefficient is given by:

rx,y =

∑n
i=1(xi − mx)(yi − my)

(n − 1)sxsy

The correlation coefficient is sometimes called Pearson’s correlation
coefficient, particularly when it is estimated from a sample using the
formula above.
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Correlation coefficient — subtleties

The correlation coefficient measures how close a scatter plot of x, y values
is to a straight line. Nonetheless, a high correlation does not mean that the
relationship between x, y is linear. It just means it can be reasonably
closely approximated by a linear relationship.

Critical value tables for the correlation coefficient are often given with rows
indexed by degrees of freedom rather than by N . For the correlation
coefficient, the number of degrees of freedom is N − 2, so it is easy to
translate such a table into the form given here. (The notion of degree of
freedom, in the case of correlation, is too advanced a concept for D&A.)

Also, critical value tables often have two classifications: one for one-tailed
tests and one for two-tailed tests. Here, we are applying a two-tailed test:
we consider both positive and negative values as significant. In a one-tailed
test, we would be interested in just one of these possibilities.
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Part III — Unstructured Data
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The χ2 test

While the correlation coefficient, introduced in the previous lecture, is a
useful statistical test for correlation, it is applicable only to numerical data
(both interval and ratio scales).

The χ2 (chi-squared) test is a general tool for investigating correlations
between categorical data.

We shall illustrate the χ2 test with the following example.

Is there any correlation, in a class of students enrolled on a course,
between submitting the coursework for the course and attending
the course exam?
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General approach

The investigation will conform to the usual pattern of a statistical test.

The null hypothesis is that there is no relationship between coursework
submission and exam attendance.

The χ2 test will allow us to compute the probability p that the data we see
might occur were the null hypothesis true.

Once again, if p is signifcantly low, we reject the null hypothesis, and we
conclude that there is a relationship between coursework submission and
exam attendance.

To begin, we use the data to compile a contingency table of frequency
observations Oij .
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Contingency table

Oij sub ¬sub

att O11 O12

¬att O21 O22

O11 is number of students who submitted coursework and attended the
exam.

O12 is number of students who did not submit coursework, but attended the
exam.

O21 is number of students who submitted coursework, but did not attend
the exam.

O22 is number of students who neither submitted coursework nor attended
exam.
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Worked example

Oij sub ¬sub

att O11 = 94 O12 = 20

¬att O21 = 2 O22 = 15

O11 is number of students who submitted coursework and attended the
exam.

O12 is number of students who did not submit coursework, but attended the
exam.

O21 is number of students who submitted coursework, but did not attend
the exam.

O22 is number of students who neither submitted coursework nor attended
exam.
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Idea of χ2 test

The observations Oij are the actual data frequencies

We use these to calculate expected frequencies Eij , i.e., the frequencies we
would have expected to see were the null hypothesis true.

The χ2 test is calculated by comparing the actual frequency to the expected
frequency.

The larger the disrepancy between these two values, the more improbable it
is that the data could have arisen were the null hypothesis true.

Thus a large discrepancy allows us to reject the null hypothesis and
conclude that there is likely to be a correlation.
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Marginals

To compute the expected frequencies, we first compute the marginals
R1, R2, B1, B2 of the observation table.

Oij sub ¬sub

att O11 O12 R1 = O11 + O12

¬att O21 O22 R2 = O21 + O22

B1 = O11 + O21 B2 = O12 + O22 N

Here
N = R1 + R2 = B1 + B2
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Marginals explained

The marginals and N are very simple.

• B1 is the number of students who submitted coursework.

• B2 is the number of students who did not submit coursework.

• R1 is the number of students who attended the exam.

• R2 is the number of students who did not attend the exam.

• N is the total number of students registered for the course.

Given these figures, if there were no relationship between submitting
coursework and attending the exam, we would expect the number of
students doing both to be

B1R1

N
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Expected frequencies

The expected frequencies Eij are now calculated as follows.

Eij sub ¬sub

att E11 = B1R1/N E12 = B2R1/N R1 = E11 + E12

¬att E21 = B1R2/N E22 = B2R2/N R2 = E21 + E22

B1 = E11 + E21 B2 = E12 + E22 N

Notice that this table has the same marginals as the original.
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The χ2 value

We can now define the χ2 value by:

χ2 =
∑
i,j

(Oij − Eij)2

Eij

=
(O11−E11)2

E11

+
(O12−E12)2

E12

+
(O21−E21)2

E21

+
(O22−E22)2

E22

N.B. It is always the case that:

(O11−E11)2 = (O12−E12)2 = (O21−E21)2 = (O22−E22)2

This fact is helpful in simplifying χ2 calculations.

Mathematical Exercise. Why are these 4 values always equal?
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Worked example (continued)

Marginals:

Oij sub ¬sub

att 94 20 114

¬att 2 15 17

96 35 131

Expected values:

Eij sub ¬sub

att 83.542 30.458 114

¬att 12.458 4.542 17

96 35 131
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Worked example (continued)

χ2 =
10.4582

83.542
+

10.4582

30.458
+

10.4582

12.458
+

10.4582

4.542

=
109.370

83.542
+

109.370

30.458
+

109.370

12.458
+

109.370

4.542

= 1.309 + 3.591 + 8.779 + 24.081

= 37.76
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Critical values for χ2 test

For a χ2 test based on a 2 × 2 contingency table, the critical values are:

p 0.1 0.05 0.01 0.001

χ2 2.706 3.841 6.635 10.828

Interpretation of table: If the null hypothesis were true then:

• The probability of the χ2 value exceeding 2.706 would be p = 0.1.

• The probability of the χ2 value exceeding 3.841 would be p = 0.05.

• The probability of the χ2 value exceeding 6.635 would be p = 0.01.

• The probability of the χ2 value exceeding 10.828 would be
p = 0.001.
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Worked example (concluded)

In our worked example, we have χ2 = 37.76 > 10.828,

In this case, we can reject the null hypothesis with very high confidence
(p < 0.001).

In fact since χ2 = 37.76 >> 10.828 we have confidence p << 0.001

We conclude that, at according to our data, there is a strong correlation
between coursework submission and exam attendance.
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χ2 test — subtle points

In critical value tables for the χ2 test, the entries are usually classified by
degrees of freedom. For an m × n contingency table, there are
(m − 1) × (n − 1) degrees of freedom. (This can be understood as
follows. Given fixed marginals, once (m − 1) × (n − 1) entries in the
table are completed, the remaining m + n − 1 entries are completely
determined.)

The values in the table on slide III.79 are those for 1 degree of freedom, and
are thus the correct values for a 2 × 2 table.

The χ2 test for a 2 × 2 table is considered unreliable when N is small (e.g.
less than 40) and at least one of the four expected values is less than 5. In
such situations, a modification Yates correction, is sometimes applied. (The
details are beyond the scope of this course.)
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Application 2: finding collocations

Recall from Part II that a collocation is a sequence of words that occurs
atypically often in language usage. Examples were: strong tea; run amok;
make up; bitter sweet, etc.

Using the χ2 test we can use corpus data to investigate whether a given
n-gram is a collocation. For simplicity, we focus on bigrams. (N.B. All the
examples above are bigrams.)

Given a bigram w1 w2, we use a corpus to investigate whether the words
w1 w2 appear together atypically often.

Again we shall apply the χ2-test. So first we need to construct the relevant
contingency table.
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Contingency table for bigrams

Oij w1 ¬w1

w2 O11 = f(w1 w2) O12 = f(¬w1 w2)

¬w2 O21 = f(w1 ¬w2) O22 = f(¬w1 ¬w2)

f(w1 w2) is frequency of w1 w2 in the corpus.

f(¬w1 w2) is number of bigram occurrences in corpus in which the
second word is w2 but the first word is not w1. (N.B. If the same bigram
appears n times in the corpus then this counts as n different occurrences.)

f(w1 ¬w2) is number of bigram occurrences in corpus in which the first
word is w1 but the second word is not w2.

f(¬w1 ¬w2) is number of bigram occurrences in corpus in which the first
word is not w1 and the second is not w2.
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Worked example 2

Recall from note II.5 that the bigram strong desire occurred 10 times in the
CQP Dickens corpus.

We shall investigate whether strong desire is a collocation.

The full contingency table is:

Oij strong ¬strong

desire 10 214

¬desire 655 3407085
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Worked example 2 (continued)

Marginals:

Oij strong ¬strong

desire 10 214 224

¬desire 655 3407085 3407740

665 3407299 3407964

Expected values:

Eij strong ¬strong

desire 0.044 223.956 224

¬desire 664.956 3407075.044 3407740

665 3407299 3407964
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Worked example 2 (continued)

χ2 =
9.9562

0.044
+

9.9562

223.956
+

9.9562

664.956
+

9.9562

3407075.044

=
99.122

0.044
+

99.122

223.956
+

99.122

664.956
+

99.122

3407075.044

= 2252.773 + 0.443 + 0.149 + 0.000

= 2253.365
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Worked example 2 (continued)

In our worked example, we have χ2 = 2253.365 > 10.828,

In this case, we can reject the null hypothesis with very high confidence
(p < 0.001).

In fact since χ2 = 2253.365 >> 10.828 we have confidence
p << 0.001

However, all this tells us is that there is a strong correlation between
occurrences of strong and occurrences of desire.

Due to the non-random nature of language, one would expect a strong
correlation for almost any bigram occurring in a corpus.

Thus the critical values table is not informative for this investigation.
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Worked example 2 (concluded)

So how can we tell if strong desire occurs atypically often?

One way is to use χ2 values to rank bigrams occurring in a given corpus. A
higher χ2 means that the bigram is more significant.

If a bigram has an atypically high χ2 value for the corpus, then this
provides evidence in support of it being a collocation.

We could thus confirm that strong desire is a collocation by calculating χ2

values for many other adjective-noun combinations, and finding that a value
of 2253.365 is atypically high.

We do not do this, because the main point, that χ2 values can be used to
investigate collocations, has been made.
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