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Part | — Structured data

e For some application domains, datankerently structured
— For instance, all students share common information

e |In such domains, it makes sense to organise the data in a way that
directly maps to theiphysical propertiesand to devise mechanisms to
access and manipulate data

e We will deal with two maindata representatiomodels:

— Theentity-relationship (ERimodel, and theelational model

e Finally, we will deal with datamanipulationfor therelational modelin
particular:

— Relational algebrathe Tuple-relational calculusand the query
languagesQL

Part |: Structured Data



Inf1, Data & Analysis, 2010 :3/ 114

Part | — Structured Data

Data Representation:
|.1 The entity-relationship (ER) data model

1.2 The relational model

Data Manipulation:
1.3 Relational algebra
|.4 Tuple relational calculus

1.5 The SQL query language

Part |: Structured Data |.1: The ER data model
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Required reading

You are required to read Chapter 2 of:

IDMS] R. Ramakrishnan and J. Gehrke
Database Management Systems
McGraw-Hill, Third Edition, 2003.

In particular,§§ 2.1-2.5.

Part I: Structured Data |.1: The ER data model
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Initial stages of database design

1. Requirements analysis.

Understand what data is to be stored in the database and what
operations are likely to be performed on it.

2. Conceptual design

Develop a high-level description of data to be stored and constraints
that hold over it.

This description is often given using the ER data model.

3. Logical design

Implement the conceptual design by mapping it togacal data
representationThe outcome is &gical schema

The implementation is often performed by translating the ER data
model into arelational database schenfaee 1.2).

Part |: Structured Data |.1: The ER data model
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The ER data model

e What is it used for?

The ER model is a way to describkatities(for example, real-world
entities) and theelationshipsbetween them

e Why is it useful?

Because it maps to differefgical data modelsincluding the
relational model

e How is it used?

It is essentially a way to visualise data and their dependencies

Part |: Structured Data |.1: The ER data model
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Entities and entity sets

Any distinguishable object (for example, in the real world) can berarty

A collection of the same type of entities is antity set

Entity sets are represented byxes labelled with the entity set’s name

Students

Part |: Structured Data |.1: The ER data model
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Attributes

Each entity of the same entity set has some charactesistibutes

Attributes are represented byals labelled with the attribute’s name,
connected to the entity set they belong to.

Matric.
number

Students

Part |: Structured Data |.1: The ER data model
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Domains
Each attribute has @domainfrom which allowable values are derived

E.g.,Matric. numbers aninteger
nameandemailare40-character strings

Matric.

number

Students
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Inf1, Data & Analysis, 2010 I: 10 / 114

Keys

A keyis a minimal set of attributes whose values allow us to uniquely
identify an entity in an entity set

There may be more than one such minimal set, they are cadledidate
keys

E.g., eitheiMatric. numberor emailcan act as keys.

Matric.
number

Students
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Primary keys
If multiple candidate keys exist, we choose one and make piineary key

The attributes occurring in the primary key anmederlinedin the ER

diagram

Matric.

number

Students
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Relationships and relationship sets
Relationshipsnodel associations between entities

Relations are grouped intelationship set®f relationships between entities
from specified entity sets.

Relationship sets are representediasnondan ER diagrams

Relationship may havettributesof their own.

Students Courses

Part |: Structured Data |.1: The ER data model
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There is no bound on the number of entities participating in a relationship.

Correspondingly, there is no bound on the number of relationships an entity
can participate in

Students Courses

Majors_In Degrees Appears_In

name

Part |: Structured Data |.1: The ER data model
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Instances

Entity instancesandrelationship instanceare what we obtain after
Instantiating the attributes of an entity or a relationship

Examples

An entity instance from th&tudentsntity set:
(123, Natassanatassa@somewh@re
An entity instance from th€oursesentity set:
(infl, Informatics 1 1)
A relationship instance from thEakesrelationship set:

(123, Natassanatassa@somewhermfl, Informatics 1 1, 88)

Part I: Structured Data |.1: The ER data model
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Key constraints

A key constraintaptures identification connections between entities
participating in a relationship

Definition. Supposer is a relationship between entity sets,

E.,..., E,. Thereis &ey constrainbn one of the entitiedyy, If,

however we instantiate the attributesigf, there is at most one relationship
Instance participated in by the attribute instantiation.

Example. Studentsdirectors of studied}oS), and the relationship between
them Qirected-By)

e Given aStudentsnstance, we can determine tb&ected-Byinstance
It appears in. That is, each student has a unique DoS.

Part |: Structured Data |.1: The ER data model
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One-to-many and many-to-many relationships

A one-to-manyelationshipR between entity setf, and E,,, means that,
for each instance,,, € FE,,,, there is at most one instaneg € F, such
thate, ande,,, appear together in some relationship instance R.

More simply: each instanae, € E, may be associated (iR) with many
Instances,,, € FE,,, but each instance,,, € E,,, must be associated (in
R) with at most one instanag, € E,.

If R is a binary relationship betwedht, and FE,,,, then being one-to-many
IS equivalent to there being a key contraintBp,.

A many-to-manyelationshipR between entity set&',, and E,,, means that
there are no constraints on the number of times entity instances E,,
ande,, € FE,, may appear in relationship instanceg R.

Part |: Structured Data |.1: The ER data model
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Examples

TheDirectedBY relationship between thigtudentaandDoSentity sets is a
many-to-one relationship.

e Each student has a single DoS, but

e each DoS may have many students

The Takesrelationship betweeStudentandCoursess a many-to-many
relationship

e Each student takes many different courses;

e Each course may be taken by many different students

Part |: Structured Data |.1: The ER data model
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Participation constraints

Participation constraints capture the mode in which an entity participates in
a relationship.

Total participationon entity sett for relationshipR is declared when every
entity instances € E appears in at least one relationship instanc®of

Partial participationon entity setE for relationshipR is declared when
there exist entitieg € FE that do not appear in instancesBf

Part |: Structured Data |.1: The ER data model
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Example

Students Directed_By DoSs

0459295 =
0482364 =

m 1190345
m 5690246
m 1295298

0423872 =
0403462 =

Total participation Partial participation

Notation. A thick arrowfrom an entity to a relationship represents that the
entity both totally participates in the relationship and also satisfies a key
constraint.

Part |: Structured Data |.1: The ER data model
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Weak entity sets

In certain cases, it is impossible to designate a primary key for entities of an
entity set.

Instead, the only way in which set participation can be declared is by
“borrowing” the key of another entity set

address

o Duildings

Part |: Structured Data |.1: The ER data model
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Notation
Double linedor weak entity and identifying relationship

Doubly underlined attributeef the weak entity set participating in the
composite key

Theidentifying relationships many-to-one and total.

address

o Duildings

Part I: Structured Data |.1: The ER data model
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Weak entity set: Definition

e A weak entity seis an entity set for which a primary key consisting
only of its own attributes cannot be identified

e Thekeyis formed by a combination of its own attributes and the key
attributes from another entity set with which it has a relationship

e The entity set from which attributes are borrowed is called the
identifying owner

e The relationship between the weak entity set and its identifying owner
Is called andentifying relationship

e The identifying relationship must be many-to-one and total.

Part |: Structured Data |.1: The ER data model
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Hierarchical entities and inheritance

Subclasse@ull-time StudentsPart-time Studenjspecialisea superclass
(Student¥ by inheriting attributes from the superclass.

Subclasses also have additional attributes of their own.

Students

Full-time Part-time
Students Students

semester part-time
load load

Part |: Structured Data |.1: The ER data model
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Part | — Structured Data

Data Representation:
|.1 The entity-relationship (ER) data model

.2 The relational model

Data Manipulation:
1.3 Relational algebra
|.4 Tuple relational calculus

.5 The SQL query language

Required reading: Chapter 3 of [DMS} 3.1,3.2,3.4,3.5

Part |: Structured Data |.2: The relational model
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History of relational model

Therelational modelwas introduced in 1970 by Edgar F. Codd, a
British computer scientist working at IBM’s Almaden Research Center
In San Jose, California.

IBM was initially slow to exploit the idea, but by the mid 1970’s IBM
was at the forefront of the commercial development of relational
database systems with its System R project, which included the
development and first implementation of SQL. (Codd was sidelined
from this project!)

Around the same time, the relational model was developed and
Implemented at UC Berkely (the Ingres project)

Nowadays relational databases are a multi-billion pound industry.
A major reason for the success of the relational model is its simplicity

In 1981, Codd received the Turing Award for his pioneering work on
relational databases

Part |: Structured Data |.2: The relational model
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Building blocks

e The basic construct isralation.
— It consists of aschemand aninstance
— Theschemacan be thought of as the format of the relation

— A relation instancas also known as table

e A schemas a set of fields, which are (name, domain) pairs
— fieldsmay be referred to as attributes, or columns

— domainsare referred to as types

e The rows of a table are calledples(or record9 and they are value
assignments from the specified domain for the fields of the table

e Thearity of a relation is its number of columns (fields)

e Thecardinality of a table is its number of rows (tuples)

Part |: Structured Data |.2: The relational model
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Example

Fields (a.k.a. attributes, columns)

P N
Schema ——— [T

Tuples 50456782 john@inf
(a.k.a. records 50412575

s0378435 helen@phys
rows) S0T89034

Part I: Structured Data |.2: The relational model
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Data definition in SQL

e SQL stands foStructured Query Language

e A special subset of SQL called timta Definition Language (DDLis
used to declare table schemata

e Relations are callethblesin SQL

e Itis atyped language

— For simplicity, we will assume there are only three types: (i)
Integer for integer numbers, (ijeal for real numbers (floating
point), and (iii)char( =) for a string of maximum lengtn

Part |: Structured Data |.2: The relational model
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General form of a DDL statement

Create table table namg  attribute name attribute type
[, attribute name attribute type]*
(integrity constraint$ )

Example 1

create table Students (

mn char(8),
name char(20),
age integer,
email char(15),

primary key (mn) )

Part |: Structured Data |.2: The relational model
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The example defines tif&tudents table.

The last line implements jarimary key constraintit declareamnto be the
chosen primary key fotudents

This constraint requires that tis#gudents table contains at most one row
with any givenmnvalue. This is enforced by the system.

Any attempt to insert a new row with annvalue that already exists in
some other row of the table will falil.

create table Students (

mn char(8),
name char(20),
age integer,
email char(15),

primary key (mn) )

Part |: Structured Data |.2: The relational model
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General form of a DDL statement

create table table namg  attribute name attribute type
[, attribute name attribute type]*
(integrity constraint$ )

Example 2
create table Takes (

mn char(8),
code char(20),
mark integer,
primary key (mn, code),
foreign key (mn) references Students,
foreign key (code) references Courses )

Part |: Structured Data |.2: The relational model
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In this case, the primary key is a pair of fields.

Theforeign key constraintenforce two further properties:

e \Whenever a tuple is inserted, the value for tmefield must be a value
that appears in the primary key column of theidents table

e Similarly, the value for theode field must be a value that appears in
the primary key column of th€ourses table

create table Takes (
mn
code
mark
primary key
foreign key
foreign key

char(8),

char(20),

integer,

(mn, code),

(mn) references Students,
(code) references Courses )

Part |: Structured Data

|.2: The relational model
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Key constraints example

s0456782
s0412375

s0412375
s0189034

Referencing|relation

[ Primary key

s0456782
s0412375

18 | mary@inf |
helen@phys

name

Informatics 1

Mathematics 1

Geology 1
Database Systems

Advanced Databases

Referenced relations

Part I: Structured Data

|.2: The relational model
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Summary

We have seen two forms of constraint:

primary key ( declaratior)
foreign key (  declaration references  table

e Primary key constraints declare primary keys.

e Foreign key constraints link columns of one table to the primary key
columns of another table.

Both are declared by the user, but enforced by the system itself.
(Attempting to enter a tuple that violates the constraint results in failure.)

N.B. In the ER modelStudents was an entity set antiakes a
relationhip. In the relational modeédpthare (necessarily!) implemented as
tables.

Part |: Structured Data |.2: The relational model
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Translating an ER diagram to a relational schema

Given an ER diagram, we find a relational schema that closely aproximates
the ER design.

The translation isipproximatedecause it is not feasible to capture all the
constraints in the ER design within the relational schema. (In SQL, certain
types of constraint, for example, are inefficient to enforce, and so usually
not implemented.)

There is more than one approach to translating an ER diagram to a
relational schema. Different translations amount to making different
Implementation choices for the ER diagram.

In D&A, we just consider a few examples illustrating some of the main
Ideas.

Part |: Structured Data |.2: The relational model
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Mapping entity sets

Students

Algorithm
e Atable is created for the entity set

e Each attribute of the entity set becomes an field of the table with an
appropriate type

e A primary key is declared

Part I: Structured Data |.2: The relational model
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Mapping entity sets

Students

create table Students (

mn char(8),
name char(20),
age integer,
email char(15),

primary key (mn) )

Part I: Structured Data |.2: The relational model
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Mapping relationship sets (no key constraints)

Students Courses

Algorithm
e Atable is created for the relationship set
e The table contains the primary keys of the participating entity sets
e Descriptive attributes of the relationship are added
e A composite primary key is declared on the table

e Foreign key constraints are declared

Part |: Structured Data |.2: The relational model
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Mapping relationship sets (no key constraints)

Students Courses

create table Takes (

mn char(8),

code char(20),

mark integer,

primary key (mn, code),

foreign key (mn) references Students,
foreign key (code) references Courses )

Part |: Structured Data |.2: The relational model
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Mapping relationship sets with key constraints

W—b Directed_By

DoS

Algorithm
e Atable is created for the relationship set

e The primary key of the “source” entity set is declared as the primary
key of the relationship set

e Foreign key constraints are declared for both source and target entity
sets

Part |: Structured Data |.2: The relational model
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Mapping relationship sets with key constraints

m-» Directed_By DoS
create table Directed By (
mn char(8),
staff _id char(8),
primary key (mn),
foreign key (mn) references Students,
foreign key (staff _id) references DoS )

N.B. The participation constraint ddtudents in Directed _By has not
been implemented. To implement this constraint another approach is
needed.

Part I: Structured Data |.2: The relational model
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Null values

In SQL, a special value a field can havenidl

A null value means that a field is undefined or missing
Null values arenot allowedto appear irprimary keyfields,
Theyare allowedto appear irforeign keyfields.

Null values can be disallowed from other fields usingoa null
declaration

In certain circumstances, by disallowingll , we can enforce a
participation constraint

Part |: Structured Data |.2: The relational model
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Mapping relationship sets with key+participation constraints

DoS

w—> Directed_By

Algorithm

¢ Include a foreign key field for the “target” entity set within the table for
the “source” entity set.

e Give this field anot null  declaration.

N.B. By omitting thenot null  declaration, we obtain an alternative way
of Implementing the key constraint without the participation constraint.

Part |: Structured Data |.2: The relational model
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Mapping relationship sets with key+participation constraints

W Directed_By DoS
create table Students (
mn char(8),
name char(20),
age Integer,
email char(15),
dos _id char(8) not null,
primary key (mn),
foreign key (dos _id) references DoS )

Part |: Structured Data |.2: The relational model
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Mapping weak entity sets and identifying relationships

address

> e Buildings

Algorithm
e Create a table for the weak entity set

e Add an attribute set, for the primary key of the entity set’s identifying
owner’s

e Add a foreign key constraint on the identifying owners primary key

e Instruct the system to automatically delete any tuples in the table for
which there are no owners

Part |: Structured Data |.2: The relational model
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Mapping weak entity sets and identifying relationships

address

o Buildings

create table Rooms (

number char(8),

capacity Integer,

building _name char(20),

primary key (number,building _hame),

foreign key (building  _name) references Buildings

on delete cascade )

Part |: Structured Data |.2: The relational model
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Mapping hierarchical entities

e Declare a table for the superclass of the hierarchy

Students

Full-time Part-time
Students Students

semester part-time
load load

e For each subclass, declare another table, containing the superclass’s

primary key and the subclass’s extra attributes

e Each subclass has the same primary key as its superclass

e Declare foreign key constraints

Part I: Structured Data

|.2: The relational model
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Mapping hierarchical entities

Students

Full-time Part-time
Students Students

semester part-time
load load

create table PT  _Students (

mn char(8),

pt _load Integer,

primary key (mn),

foreign key (mn) references Students )

Part |: Structured Data |.2: The relational model
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Part | — Structured Data

Data Representation:
|.1 The entity-relationship (ER) data model

1.2 The relational model

Data Manipulation:
1.3 Relational algebra
|.4 Tuple relational calculus

.5 The SQL query language

Required reading: Chapter 4 of [DMS[ 4.1,4.2

Part |. Structured Data |.3: Relational algebra
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Querying

Once data is organised in a relational schema, the natural next step is to
manipulatedata. For our purposes, this means querying.

Queryingis the process of identifying the parts of stored data that have
properties of interest

We consider three approaches.

e Relational algebrétoday’s topic): goroceduralway of expressing
gueries over relationally represented data

e Tuple-relational calculuésee 1.4): adeclarativeway of expressing
gueries, tightly coupled to first-order predicate logic

e SQL (see I.5): a widely implemented query language influenced by
relational algebra and relational calculus

Part |. Structured Data |.3: Relational algebra
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Operators

The key concept in relational algebra is@perator

Operators accept a single relation or a pair of relations as input
Operators produce a single relation as output

Operators can beomposedy using one operator’s output as input to
another operator (composition of functions)

There are five basic operatosslection projection union, cross-product
anddifference

Other operators can be defined as composites of these five, but are so
frequently used that they are often treated as fundamental

Part |. Structured Data |.3: Relational algebra
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Selection and projectiorr and
Recall that relational data is storedtables

Selectiorandprojectionallow one to isolate any “rectangular subset” of a
single table

e Selection identifiesows of interest

e Projection identifiegolumnsof interest

If both are used on a single table, we extract@angular subseaf the
table

Part |. Structured Data |.3: Relational algebra
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Selection: example

n email
50456782 john@int

s0412375 | Mary mary@inf
s0378435 | Helen helen@phys
s0189034 peter@math

Students

name | age email

s0378435 helen@phys
s0189034 peter@math

(Students)

CIage>18

Part |. Structured Data |.3: Relational algebra
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Selection: general form

General formiopredicard Relation instance

A predicatels a condition that is applied on each row of the table

e It should evaluate to either true or false

e If it evaluates to true, the row is propagated to the output, if it evaluates
to false the row is dropped

e The output table may thus have lower cardinality than the input

Predicates are written in the Boolean form
termy bop term, bop ... bop term,,

e Wherebop € {V, A}
e term;’s are of the formattributerop constanbor
attributg rop attributey, (whererop € {>, <, =, #,>,<})

Part |. Structured Data |.3: Relational algebra
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Projection: example

name
50456782 john@int

name

John | 18 |
0412375 Mary | 18 |
50378435 helen@phys Helen | 20 |

0189034 Pefer | 22 |

Students Mhame, age(S’cuden’cs)

s0378435 helen@phys

(Students)

s0189034

CIage>18

Part |. Structured Data |.3: Relational algebra
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Projection: general form

General form:roumn lis Relation instance

All rows of the input are propagated in the output

Only columns appearing in thmlumn listappear in the output

Thus thearity of the output table may be lower than that of the input table

The resulting relation has a different schema!

Part |. Structured Data |.3: Relational algebra
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Selection and projection: example

50456782 John@in

S0412375| Mary | 18 | mary@inf _
S0378435 heler@phys

50189034

Students m (Students)

name, age

S name | age | email |
S05751%5 TeTenphys
50159034
o age>1 g(Students) Combination

Note thealgebraic equivalencbetween:

® O'age> 18 (Wnameage(StUdent$)
® Wnameage(o'age> 18 (StUdent$)

Part |. Structured Data |.3: Relational algebra
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Set operations

There are three basic set operations in relational algebra:
e UNion
e difference
e Cross-product

A fourth, intersection can be expressed in terms of the others
All these set operations are binary.

Essentially, they are the well-known set operations from set theory, but
extended to deal with tuples

Part |. Structured Data |.3: Relational algebra
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Union

Let R andS be two relations. For union, set difference and intersecion
and.S are required to have compatible schemata:

e Two schemata are said to bempatiblaf they have the same number
of fields and corresponding fields in a left-to-right order have the same
domains. N.B., the names of the fields are not used

Theunion R U S of R andsS is a new relation with the same schemalas
It contains exactly the tuples that appear in at least one of the reld@ons
andS

N.B. For naming purposes it is assumed that the output relation inherits the
field names from the relation appearing first in the specificati®m(the
previous case)

Part |. Structured Data |.3: Relational algebra
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Union example

50456752 John@int

0112375 .
s0378435 @ ernail
50456752 et

50189034 | Deter | 22 |
‘ s0412375
54 50378435 helen@phys

name email

50489967 basil@inf
SOL12375

$9989232 | Ophelia oph@bio
0189034 5,05,
0289125

Part |. Structured Data |.3: Relational algebra
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Set difference and intersection

Theset differencd? — S andintersectionR N S are also new relations
with the same schema @& and.s.

R — S contains exactly those tuples that appeaRibut which do not
appear inS

R N S contains exactly those tuples that appear in @@thnd.S
For both operations, the same naming conventions apply as for union

Note that intersection can be defined from set difference by
RNS=R—-(R-2S)

Part |. Structured Data |.3: Relational algebra
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Set difference example

50456752 John@int

0412375

50378435 helen@phys
0189034

51

50489967 basil@inf
SOL12375

age
50456782 john@inf

s0378435 helen@phys

$9989232 | Ophelia oph@bio
07890314
0289125

Part |. Structured Data |.3: Relational algebra
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Intersection example

50456752 John@int

0412375

50378435 helen@phys
0189034

51

50489967 basil@inf
SOL12375

age
50412575

50189034

$9989232 | Ophelia oph@bio
07890314
0289125

Part |. Structured Data |.3: Relational algebra
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Cross product

Thecross-produc(also known as th€artesian produgtR x S of two
relationsR andS is a new relation where

e The schema of the relation is obtained by first listing all the fieldR of
(in order) followed by all the fields a$' (in order).

e The resulting relation contains one tugbg s) for each pair of tuples
r € Rands € S. (Here(r, s) denotes the tuple obtained by
appending- ands together, withr first ands second.)

Note that if there is a field name commonf®and.S then two separate
columns with this name appear in the cross-product schema, as defined
above, causing aaming conflict

N.B. The two relations need not have the same schema to begin with.
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Cross-product example

name email

50456782 johnéint
SOR12575 infl | Informatics 1 | 1 |

50378435 helen@phys [ 11 _ thematics 1
50189034 athematis Tl

S

1

-

0378435 helentphys | 1

S0378435 helen@phys
0189034

20185031 | Peter | 22 Tbetermath [ math1|  Visthematies T T

S xR
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Renaming
The renaming operator changes the names of tables and columns.

This can be used to avoithming conflictsvhen the application of an
operator results in a schema with duplicate column names

General form

PNew-relation-naméenaming-lis) (Ofigina|—fe|ati0n-nam)3
Semantics:
e The relation is assigned the new relation name

e The renaming list consists of terms of the fooldname— newname
which rename a field namexddnameto newname

e For p to be well-defined there should be no naming conflicts in the
output
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Renaming example

Students

name | age email

new table name l

PS(mn—> sid, email—ad dress)StudentS

renaming list

: |

sid name | age address

N.B.
e The types of the columns do not change

e Either the renaming list, or the new table name may be empty
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Join
Therelational join R ><, S Is the most frequently used relational operator.

It is aderived operatorit can be defined in terms of cross-product and
selection.

The format for a join isR <, S whereR andS are relations and thein
predicatep is a predicate (as defined on slide 3.54) that applies to the
schemaofR x S.

For examplep may have the fornecol, rop col, wherecol,, col, are
columns ofR, S androp € {>,<,=,#,>,<}

Formally, the relational join islefinedby:

R, S =0,(R X S)
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Join example

50456782 R Y:

S0412375

s0378435 helen@phys
S0T89034

Students

s0378435 helen@phys |s0378435 | math1| 70 |

Students X Takes

Students.mn = Takes.mn
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Equijoin
An equijoinis a commonly occurring join operation in which the predicate

IS a conjunction of equalities of the forilR.name; = S.name,.
(A conjunctionis a list of conditions connected hy.)

The schema of the equijoin consists of the fielddffollowed by just

those fields ofS that are not mentioned in the join equalities. The equijoin
IS computed byprojectingthe join onto the fields that remain (all those of
R, and those fron® that have not been removed). Put more simply:
remove from the join those columns labelled wikields that appear in the
equalities.

Note that the example on the previous slide,

Students Xsiudents.mn = Takes.mn  1akes , is naturally treated as an
equijoin . The resulting relation is then as before, but with the second
column labellednnremoved.
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Natural join

Thenatural joinis a special equijoin in which the equalities are betwaken
fields that have the same nameRandsS.

We simply write R > S for such an equijoin.

Note that the equijoin version of the example on slide 3.69 is in fact the
natural joinStudents < Takes . (The common field name \n)

This is a very natural way of joining two relations, hence the name. It
frequently occurs when joining two tables in which one has a foreign key
constraint referencing the other.
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Part | — Structured Data

Data Representation:
|.1 The entity-relationship (ER) data model

1.2 The relational model

Data Manipulation:
1.3 Relational algebra
|.4 Tuple-relational calculus

.5 The SQL query language

Required reading: Chapter 4 of [DMS} 4.3
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Motivation

Tuple-relational calculus is another way of writing queries for relational
data.

Its power lies in the fact that it is entiretleclarative

That is, we specify the properties of the data we are interested in retrieving,
but (in contrast to relational algebra) we do not describe a method by which
the data can be retrieved
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Basic format
Queries are based onple variables

Each tuple variable has an associated schema. The variable ranges over all
possible tuples of values matching the schema declaration.

A guery has the form

{T | p(T)}
whereT is a tuple variable angl(T") is a (first-order predicate logic)

formula (in which the tuple variabl#& occurs free).

The result of this query is the set of all possible tuglésonsistent with the
schema ofl") for which the formulgp(T') evaluates to true witl" = ¢
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Simple example

Find all students at least 19 years old

{S | S € Students A S.age > 18}

In detail:
e Tuple variableS is introduced
e S instantiated over all tuples in the Students table
e PredicateS.age > 18 is evaluated on each individual tuple

e |f and only if the predicate evaluates to true, the tuple is propagated to
the output
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Formal syntax of atomic formulae

An atomic formulas one of the following:
e R c Rel
e Raop S.b
e R.a op constant
e constant opsS.b

where: R, S are tuple variablesielis a relation nameag, b are attributes of
R, S respectively, andpis any operator in the s¢t>, <, =, #, >, <}
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Formal syntax of (composite) formulae

A formulais (recursively defined) to be one of the following:

e any atomic formula

e °p, pANq, pVgq, p=4(q
e JR. p(R), VR.p(R)

wherep(R) denotes a formula in which the variabigappears free.

N.B. First-order logic was introduced in more detail in InfLA Computation

& Logic. Here, we use different notation for the connectivedor not

A for and V for or; and=- for —. Our notation agrees with

Ramakrishnan & Gehrke “Database Management Systems”. The main
difference from standard first-order logic is the use of variables ranging over
tuples (rather than individuals), and the correspondingly specialised forms
of atomic formula.
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A subtle point

In ordinary first-order logic, one can, in theory, form quantificatiads. p
andVR. p even whenR does not occur im. (In practice, such
guantifications are normally useless since they are vacuous.)

In tuple-relational calculus we only allowR. p andVR. p whenR
occurs free imp for the following reason.

e Under this rule, every tuple variabl that appears in a formula is
forced to appear in at least one atomic subformula. The atomic
formulae in whichR appears then determine the schem#ofThe
schema is taken to be the smallest one containing all the fields that are
declared as attributes @ within the formula itself.
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lllustrative example
An example illustrating the previous point.
{P | 3S € Students (S.age > 20 A P.name = S.name
A P.age = S.age)}

e The schema of is that of theStudents table. This is declared by
the atomic formulas’ € Students

e The schema oP has just two fieldflame andage, with the same
types as the corresponding fieldsStudents

e The query returns a table with two fieldame andage containing the
names and ages of all students aged 21 or over.

Note the use oHS € Students (p) for 3S (S € Students A p).
We make free use of such (standard) abbreviations.
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Further examples (1)

Query:Find the names of students who are taking Informatics 1

Relational algebra:

TTStudents.name (StUdentS DXstudents.mn  =Takes.mn

(Takes PD}Takes.code =Courses.code (O'name:‘lnformatics 1’(COUI’S€S ))))

Tuple-relational calculus:

{P | 35S € Students JT € Takes dJC € Courses
(C.name = ‘Informatics 1’ A C.code = T.code A

S.mn=T.mn A P.name = S.name)}
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Tree representation of algebraic expression (abstract syntax)
For the previous query, changing the bracketing does not change the query.

TTStudents.name ((StUdentS Dstudents.mn  =Takes.mn Takes)

PATakes.code =Courses.code (U'name:‘lnformatics y(COUI‘SGS )) )

A tree representation can help one visualise a relational algebra query.

MStudents.name

MTakes.code = Courses.code

RN

NStudents.mn = Takes.mn crmame:’Imformatics 1’
Students Takes Courses
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Further examples (2)

Query:Find the names of all courses taken by (everyone called) Joe

Relational algebra:

TUCourses.name ((O'name:’Joe’(StUdemS )) Dstudents.mn  =Takes.mn

(Takes D<ITakes.code —Courses.code COUISES ))

Tuple-relational calculus:

{P | 35S € Students 3JT € Takes dJC € Courses
(S.name = ‘Joe’ A S.mn=T.mn A

C.code = T.code A P.name = C.name)}
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Further examples (3)

Query:Find the names of all students who are taking Informatics 1 or
Geology 1

Relational algebra:

TTStudents.name (StUdentS Dstudents.mn  =Takes.mn
(Takes PTakes.code =Courses.code

(U'name:‘lnformatics 1’ Vname="‘Geology y(COUI’SGS ))))

Tuple-relational calculus:

{P | 3S € Students 3IT € Takes 3IC € Courses
((C.name = ‘Informatics 1' v C.name = 'Geology 1) A
C.code =T.code A S.mn=T.mn A P.name = S.name)}
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Further examples (4)

Query:Find the names of students who are taking both Informatics 1 and
Geology 1

Relational algebra:

7TStudents.nam(9

(StUdentS DXstudents.mn =Takes.mn

(Takes D>Takes.code =Courses.code

(O'name:‘lnformatics 1’(COUI’S€$) ))
M
(Students  Ddstudents.mn =Takes.mn

(Takes D>}XITakes.code —=Courses.code

(O'name:‘GeoIogy 1’(COUI‘S€$) )) )
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Further examples (4 continued)

Query:Find the names of students who are taking both Informatics 1 and
Geology 1

Tuple-relational calculus:

{P | 35S € Students (P.name = S.name A
VC' € Courses
((C.name = ‘Informatics 1’ v C.name = ‘Geology 1) =
(AT € Takes (T.mn= S.mn A T.code = C.code)))) }

Exercise.What does this query return in the case that there is no course in
Courses called ‘Geology 1'? Find a way of rewriting the query so that it
only returns an answer if both ‘Informatics 1’ and ‘Geology 1’ courses exist.
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Further examples (5)
Query:Find the names of all students who are taking all courses

Tuple-relational calculus:

{P | 35S € Students (P.name = S.name A
VC' € Courses
(AT € Takes (T.mn= S.mn A T.code = C.code))) }

Exercise.Try to write this query in relational algebra.
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Relational algebra and tuple-relational calculus compared

Relational algebra (RA) and tuple-relational calculus (TRC) havedinee
expressive power

That is, if a query can be expressed in RA, then it can be expressed in TRC,
and vice-versa

Why is it useful to have both approaches?
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Declarative versus procedural
Recall that TRC isleclarativeand RA isprocedural

This suggests the following methodology.
e Specifythe data that needs to be retrieved using TRC.

e Translate this to anquivalent gueryn RA that gives arefficient
methodof retrieving the data.

This methodology underpins practical approachesu@ry optimisationn
relational databases.

In practice, queries are written in a real-world query language such as SQL,
rather than TRC.

Nevertheless, query optimisation is of enormous importance in applications.
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Part | — Structured Data

Data Representation:
|.1 The entity-relationship (ER) data model

1.2 The relational model

Data Manipulation:
1.3 Relational algebra
|.4 Tuple-relational calculus

I.5 The SQL query language

Required reading: Chapter 5 of [DMS[ 5.1,5.2,5.3,5.5,5.6
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A brief history

SQL stands fo6tructured Query Language

Originally developed at IBM in SEQUEL-XRM and System-R projects
(1974-77)

Caught on very rapidly
Currently, most widely used commercial relational database language

Continues to evolve in response to changing needs. (Adopted as a standard
by ANSI in 1986, ratified by ISO 1987, revised: 1989, 1992, 1999, 2003,
2006, 2008!")

Pronounced S. Q. L.
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Data Manipulation Language

In note 2 we met the SQData Definition Language (DDL.which is used
to define relational schemata.

This lecture introduces theata Manipulation Language (DML)

The DML allows users to:
e Insert, delete and modify rows
e query the database

Note. SQL is a large and complex language. The purpose of this lecture is
to introduce some of the basic and most important query forms, sufficient
for expressing the kinds of query already considered in relational algebra
and tuple-relational calculus. (SQL is currently covered in more detail in
the third-year “Database Systems” course.)
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Inserting data

Assume a tabl&tudents  with schema:

Students (mn:char(8), name:char(20),

age:integer, email:char(15))

Insert data using:
INSERT
INTO Students (mn, name, age, email)
VALUES ('s0765432’, 'Bob’, 19, 'bob@sms’)

Although SQL allows the list of column names to be omitted from the

INTO clause (SQL merely requires the tuple of values to be presented in the
correct order), it is considered good style to write this list explicitly.

One reason for this is that it means INSERT command can be
understood without separate reference to the schema declaration.
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Deleting data

Deleteall students called Bob fror8tudents

DELETE
FROM Students S
WHERE S.name = 'Bob’

Updating data
Rename student ‘s0765432’ Bobby.

UPDATE Students S
SET S.name = ’'Bobby’
WHERE S.mn = 's0765432’
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Form of a basic SQL query

SELECT [DISTINCT] select-list
FROM from-list
WHEREQqualifications

e TheSELECTclause specifies columns to be retained in the result.
(N.B., it performs gorojectionrather than aelection)

e TheFROMlause specifies a cross-product of tables.

e TheWHERIEElause specifies selection conditions on the rows of the
table obtained via thEROMlause

e TheSELECTandFROMlauses are required, tNéHERI[Elause is
optional.
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A simple example

Query: Find all students at least 19 years old

SELECT *
FROM Students S
WHERE S.age > 18
This returns all rows in th&tudents table satisfying the condition.

Alternatively, one can be explicit about the fields.

SELECT S.mn, S.name, S.age, S.email
FROM Students S
WHERE S.age > 18

The first approach is useful for interactive querying. The second is
preferable for queries that are to be reused and maintained since the schema
of the result is made explicit in the query itself.
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A simple example continued

Query: Find the names and ages of all students at least 19 years old

SELECT S.name, S.age
FROM Students S
WHERE S.age > 18

This query returns a table with one row (with the specified fields) for each
student in thestudents table whose age is 19 years or over.

SELECT DISTINCT S.name, S.age
FROM Students S
WHERE S.age > 18

This differs from the previous query in that only distinct rows are returned.
If more than one student have the same name and>age’(years) then the
corresponding name-age pair will be included only once in the output table.
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Query syntax in detalil

e Thefrom-listin theFROMIlause is a list of tables. A table name can be
followed by arange variable e.g.,S in the queries above.

e Theselect-listin the SELECTclause is a list of (expressions involving)
column names from the tables named infiloen-list Column names
can be prefixed by range variables.

e Thequalificationin the WHERIElause is a boolean combination (built
usingAND OR andNO) of conditions of the fornexpop exp where
op € {<,=,>,<=,<>,>=, } (the last three stand fo€, #, >

respectively), anéxpis a column name, a constant, or an
arithmetic/string expression.

e TheDISTINCT keyword is optional. It indicates that the table
computed as an answer to the query should not contain duplicate rows.
The default is that duplicate rows are not eliminated.
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The meaning of a query

A guery computes a table whose contents can be understood via the
following conceptual evaluation stratedgr computing the table.

1. Compute the cross-product of the tables infthen-list.

2. Delete rows in the cross-product that fail dpegalificationcondition.

3. Delete all columns that do not appear in gedect-list

4. If DISTINCT is specified, eliminate duplicate rows.
This is aconceptuakvaluation strategy in the sense that it determines the
answer to the query, but would be inefficient to follow in practice.
Real-world database management systemsjusgy optimisation

techniques (based on relational algebral!) to find more efficient strategies for
evaluating queries.
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Diversion: multisets

The sensitivity of SQL to duplicate rows in tables means that SQL models a
table as anultisetof rows, rather than assetof rows. (In contrast, in the
relational model, a table is simplyralation, which is just asetof tuples.)

A multiset(sometimes called laag) is like a set except that it is sensitive to
multiplicities, i.e., to the number of times a value appears inside it.

For example, the following define the same set, butiferentmultisets:
{2,3,5} {2,3,3,5} {2,3,3,5,5,5} {2,2,2,3,3,5}

Although multisets are sensitive to multiplicities, they are not sensitive to
the order in which values are given.

For example, the following define the same multiset.

{2,3,3,5} {3,2,5,3} {5,3,3,2}
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Example tables

mn name age email
s0456782| John | 18 john@inf
s0412375| Mary | 18 mary@inf
s0378435| Helen | 20 helen@phys
s0189034| Peter | 22 peter@math

Students
code name year mn code mark
INnfl Informatics1 | 1 s0412375| Infl 80
mathl | Mathematics 1| 1 s0378435| mathl| 70
Courses Takes
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Example query (1)
Query:Find the names of all students who are taking Informatics 1

SELECT S.name
FROM Students S, Takes T, Courses C
WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’
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Example query (1 continued)

Query:Find the names of all students who are taking Informatics 1

SELECT S.name
FROM Students S, Takes T, Courses C
WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step lof conceptual evaluation constructs the cross-produsStadents
Takes andCourses .

For the example tables, this has 16 rows and 10 columns. (The columns are:
S.mn, S.name, S.age , S.email , T.mn, T.code , T.mark , C.code ,
C.name, C.year .)
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Example query (1 continued)

Query:Find the names of all students who are taking Informatics 1

SELECT S.name
FROM Students S, Takes T, Courses C
WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 2of conceptual evaluation selects the rows satisfying the condition:

S.mn = T.mn AND T.code = C.code
AND C.name = ’Informatics 1’

For the example tables, this has just 1 row (and still 10 columns).
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Example query (1 continued)

Query:Find the names of all students who are taking Informatics 1

SELECT S.name
FROM Students S, Takes T, Courses C
WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 3of conceptual evaluation eliminates all columns ex&pame.

For the example tables, this produces the taliry

Step 4of conceptual evaluation does not apply sibd8TINCT is not
specified. (IDISTINCT were specified it would not change the result for
our example tables, but it would for other choices of data.)
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Example query (2)
Query:Find the names of all courses taken by (everyone called) Mary.

SELECT C.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code
AND S.name = ’'Mary’
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Example query (3)

Query:Find the names of all students who are taking Informatics 1 or
Mathematics 1.

SELECT S.name
FROM Students S, Takes T, Courses C
WHERE S.mn = T.mn AND T.code = C.code AND

(C.name="Informatics 1' OR C.name='Mathematics 1’)
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Example query (3 continued)

Query:Find the names of all students who are taking Informatics 1 or
Mathematics 1.

SELECT Sil.name

FROM Students S1, Takes T1, Courses Cl1

WHERE S1.mn = Tl.mn AND Tl.code = Cl.code
AND Cl.name = ’Informatics 1’

UNION

SELECT S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code
AND C2.name = ’Mathematics 1’

Part |. Structured Data 1.5: The SQL query language



Inf1, Data & Analysis, 2010 : 108 / 114

Example query (4)

Query:Find the names of all students who are taking both Informatics 1
and Mathematics 1.

SELECT S.name

FROM Students S, Takes T1, Courses Cl1,
Takes T2, Courses C2,

WHERE S.mn = Tl1.mn AND Tl.code = Cl.code
AND S.mn = T2.mn AND T2.code = CZ2.code
AND Cl.name = ’Informatics 1’

AND C2.name = ’'Mathematics 1’

This is complicated, somewhat counterintuitive (and also inefficient!)
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Example query (5)

Query:Find the matriculation numbers and names of all students who are
taking both Informatics 1 and Mathematics 1.
SELECT S1.mn, Sl.name
FROM Students S1, Takes T1, Courses C1
WHERE S1.mn = Tl.mn AND Tl.code = Cl.code
AND Cl.name = ’Informatics 1’
INTERSECT
SELECT S2.mn, S2.name
FROM Students S2, Takes T2, Courses C2
WHERE S2.mn = T2.mn AND T2.code = C2.code
AND C2.name = ’'Mathematics 1’
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Example query (6)

Query:Find the matriculation numbers and names of of all students who are
taking Informatics 1 but not Mathematics 1.
SELECT S1.mn, Sl.name
FROM Students S1, Takes T1, Courses C1
WHERE S1.mn = Tl.mn AND Tl.code = Cl.code
AND Cl.name = ’Informatics 1’
EXCEPT
SELECT S2.mn, S2.name
FROM Students S2, Takes T2, Courses C2
WHERE S2.mn = T2.mn AND T2.code = C2.code
AND C2.name = ’'Mathematics 1’
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Example query (7)

Query:Find all pairs of matriculation numbers such that the first student in
the pair obtained a higher mark than the second student in Informatics 1.

SELECT S1.mn, S2.mn

FROM Students S1, Takes T1, Courses C,
Students S2, Takes T2

WHERE S1.mn = Tl.mn AND T1l.code = C.code
AND S2.mn = T2.mn AND T2.code = C.code
AND C.name = ’Informatics 1’
AND Tl.mark > T2.mark
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Aggregate operators

In addition to retrieving data, we often want to perform computation over
data.

SQL includes five usefuidggregate operationsvhich can be applied on any
column, saA, of a table.

1. COUNT ([DISTINCT] A) : The number of [distinct] values in th®

column.

2. SUM (IDISTINCT] A) :The sum of all [distinct] values in thé
column.

3. AVG ([DISTINCT] A) :The average of all [distinct] values in tiAe
column.

4. MAX (A): The maximum value in thA column.

5. MIN (A) : The minimum value in thé column.
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Example query (8)
Query: Find the number of students taking Informatics 1.

SELECT COUNT(T.mn)
FROM Takes T, Courses C
WHERE T.code = C.code AND C.name = ’Informatics 1’

Example query (9)

Query: Find the average mark in Informatics 1.

SELECT AVG(T.mark)
FROM Takes T, Courses C
WHERE T.code = C.code AND C.name = ’Informatics 1’
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Beyond this lecture

There are many topics we haven’t covered:

e Nested queries

e TheGROUP B¥ndHAVINGclauses
e Treatment oNULLvalues

e Complex integrity constraints

e Triggers

These are treated in some detail in Chapter 5 of Ramakrishnan & Gehrke’s
“Database Management Systems”.

Knowledge of these topics st requiredfor Informatics 1.
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