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Analysis of data

There are many reasonsdaoalysedata.

Two common goals of analysis:

e Discover implicit structure in the data.
E.g., find patterns in empirical data (such as experimental data).

e Confirm or refute a hypothesis about the data.
E.g., confirm or refute an experimental hypothesis.

Statisticgprovides a powerful and ubiquitous toolkit for performing such
analyses.
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Data scales

The type of analysis performed (obviously) depends on:
e The reason for wishing to carry out the analysis.

e The type of data to hand.

For example, the data may gaantitative(i.e., numerical), or it may be
qualitative(i.e., descriptive).

One important aspect of the kind of data is the forndlaffla scalat belongs
to:

e Categorical(also calledhomina) andOrdinal scales (for qualitative
data).

e Interval and ratioscales (for quantitative data).

This affects the ways in which we can manipulate data.

Part V. Statistical Analysis of Data V.1: Data scales and summary statistics



Inf1l, Data & Analysis, 2009 V:5 /61

Categorical scales

Data belongs to aategorical scalaef eachdatum(i.e., data item) is
classified as belonging to one of a fixed number categories.

Example: The British Government (presumably) classifies Visa
applications according to the nationality of the applicant. This classification
IS a categorical scale: the categories are the different possible nationalities.

Example: Insurance companies classify some insurance applications (e.g.,
home, possessions, car) according to the postcode of the applicant (since
different postcodes have different risk assessments).

Categorical scales are sometimes callechinal scalesespecially in cases
In which the value of a datum is a name.
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Ordinal scales

Data belongs to aardinal scaleif it has an associated ordering but
arithmetic transformations on the data are not meaningful.

Example: TheBeaufort wind force scalelassifies wind speeds on a scale
from 0 (calm) to12 (hurricane). This has an obvious associated ordering,
but it does not make sense to perform arithmetic operations on this scale.
E.g., it does not make much sense to say that &£éd&rong breeze) is the
average of calm and hurricane force.

Example: In many institutions, exam marks are recorded as grades (e.g.,
A,B,..., G) rather than as marks. Again the ordering is clear, but one does
not perform arithmetic operations on the scale.
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Interval scales

An interval scalas a numerical scale (usually with real number values) in
which we are interested melative valuerather tharabsolute value

Example: Points in time are given relative to an arbitrarily chosen zero
point. We can make sense of comparisons such as: mamert009 years
later than momeny. But it does not make sense to say. momein twice
as large as momeant

Mathematically, interval scales support the operations of subtraction
(returning a real number for this) and weighted average.

Interval scales do not support the operations of addition and multiplication.
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Ratio scales

A ratio scaleis a numerical scale (again usually with real number values) in
which there is a notion adibsolute value

Example: Most physical quantities such as mass, energy and length are
measured on ratio scales. So is temperature if measured in kelvins (i.e.
relative to absolute zero).

Like interval scales, ratio scales support the operations of subtraction and
weighted average. They also support the operations of addition and of
multiplication by a real number.

Question for physics studentts time a ratio scale if one uses the Big Bang
as its zero point?
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Visualising data

It is often helpful tovisualisedata by drawing a&hart or plotting agraph of
the data.

Visualisations can help us guess properties of the data, whose existence we
can then explore mathematically using statistical tools.

For a collection of data of a categorical or ordinal scale, a natural visual
representation is aistogram(or bar chart), which, for each category,
displays the number of occurrences of the category in the data.

For a collection of data from an interval or ratio scale, one plajsaah
with the data scale as theaxis and the frequency as tlyeaxis.

It is very common for such a graph to take a bell-shaped appearence.
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Normal distribution

In anormal distribution the data is clustered symmetrically around a
central value (zero in the graph below), and takes the bell-shaped
appearance below.
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Normal distribution (continued)

There are two crucial values associated with the normal distribution.

Themean u, is the central value around which the data is clustered. In the
example, we havg = 0.

Thestandard deviationo, is the distance from the mean to the point at
which the curve changes from beingnvexto beingconcave In the
example, we haver = 1. The larger the standard deviation, the larger the
spreadof data.

The general equation for a normal distribution is

_ (z—w)?
Yy = ce 202

(You do not need to remember this formula.)
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Statistic(s)

A statisticis a (usually numerical) value that captures some property of
data.

For example, the mean of a normal distribution is a statistic that captures the
value around which the data is clustered.

Similarly, the standard deviation of a normal distribution is a statistic that
captures the degree of spread of the data around its mean.

The notion ofmeanandstandard deviatiolgeneralise to data that is not
normally distributed.

There are also othemodeandmedian which are alternatives to the mean
for capturing the “focal point” of data.
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Mode

Summary statisticsummarise a property of a data set in a single value.

Given data valuegq, x2, ..., x N, themode(or mode$is the value (or
values)x that occurs most often i1, €2, ..., T N.

Example: Given data®6, 2,3,6,1,5,1,7, 2, 5, 6, the mode i%, which is
the only value to occur three times.

The mode makes sense for all types of data scale. However, it is not
particularly informative for real-number-valued quantitative data, where it is
unlikely for the same data value to occur more than once.

(This is an instance of a more general phenomenon. In many circumstances,
it is neither useful nor meaningful to compare real-number values for
equality.)
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Median

Given data valuegq, 2, . .., x N, Written in non-decreasing ordehe
medianis the middle valuec(N+1) assuming\ is odd. If NV is even, then

2

any data value betweety vy andx ;) inclusive is a possiblenedian

Example: Given data6,2,3,6,1,5,1,7, 2,5, 6, we write this in
non-decreasing order:

1,1,2,2,3,5,5,6,6,6,7
The middle value is the sixth value

The median makes sense for ordinal data and for interval and ratio data. It
does not make sense for categorical data, because categorical data has no
associated order.
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Mean
Given data valuegq, 2, ..., x N, themeanu is the value:
N
N

Example: Given data6,2,3,6,1,5,1,7, 2,5, 6, the mean is

6+24+34+64+14+54+14+74+24+5+6
11

Although the formula for the mean involves a sum, the mean makes sense
for both interval and ratio scales. The reason it makes sense for data on an
Interval scale is that interval scales suppoeighted averageand a mean

Is simply an equally-weighted average (all weights are S%)ls

The mean doesot make sense for categorical and ordinal data.
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Variance and standard deviation

Given data valuegq, 2, . . . , x N, With meanu, thevariance written
Var or o2, is the value:

D i (@i — p)?
N

Var =

Thestandard deviationwritten o, is defined by:

. . Z?:l(mi — p)?
o = VVar = \/ N

Like the mean, the standard deviation makes sense for both interval and
ratio data. (The values that are squared are real numbers, so, even with
Interval data, there is no issue about performing the multiplication.)
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Variance and standard deviation (example)
Given data6,2,3,6,1,5,1,7, 2,5, 6, we haveu = 4.

22 4+ 22 4124+ 22432412432 4324224124 22

Var =
11
B 44+4+14+4+4+94+14+94+94+4+14+4
- 11
B 50
11
— 4.55 (to 2 decimal places)
50
o — —
11

= 2.13 (to 2 decimal places)
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Populations and samples

The discussion of statistics so far has been all about computing various
statistics for a given set of data.

Often, however, we are interested in knowing the value of the statistic for a
whole populationfrom which our data is just aample

Examples:

e EXperiments in social sciences where one wants to discover some
general property of a section of the population (e.g., teenagers).

e Surveys (e.g., marketing surveys, opinion polls, etc.).

e In software design, understanding requirements of users, based on
guestioning a sample of potential users.

In such cases it is totally impracticable to obtain exhaustive data about the
population as a whole. So we are forced to obtain data about a sample.
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Sampling

There are important guidelines to follow in choosing a sample from a
population.

e The sample should be chosemdomlyfrom the population.

e The sample should be &sge as is practically possible (given
constraints on gathering data, storing data and calculating with data).

These two guidelines are designed to improve the likelihood that the sample
IS representativef the population. In particular, they minimise the chance
of accidentally building d@iasinto the sample.

Given a sample, one calculates statistical properties of the sample, and uses
these to infer likely statistical properties of the whole population.

Important topics in statistics (beyond the scope of D&A) rai@ximising
andquantifyingthe reliability of such techniques.
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Estimating statistics for a population given a sample

Tyically one has a (hopefully representative) sampie. . ., x,, from a
population of sizeV wheren << N (i.e.,n is much smaller thaiV).

We use the sample,, ..., x, to estimate statistical values for the whole
population.

Sometimes the calculation is the expected one, sometimes it isn't.

To estimate theneanof the population, calculate

Z’?:l £Lq

n

Il,:

As expected, this is just the mean of the sample.

Part V. Statistical Analysis of Data V.1: Data scales and summary statistics



Inf1l, Data & Analysis, 2009 V.21 /61

Estimating variance and standard deviation of population

To estimate thearianceof the population, calculate

2?21 (z; — N)z

n—1

The best estimate of the standard deviatiomf the population, is:

o \/z;;l(wi—u)z

n—1

N.B. These values aneot simply the variance and standard deviation of the
sample. In both cases, the expected denominatarltds been replaced by
n — 1. This gives a better estimate in general winer< IN.
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Caution

The use of samples to estimate statistics of populations is so common that
the formula on the previous slide is very often the one needed when
calculating standard deviations.

Its usage iIs so widespread that sometimes it is wrongly given as the
definition of standard deviation.

The existence of two different formulas for calculating the standard
deviation in different circumstances can lead to confusion. So one needs to
take care.

Sometimes calculators make both formulas available via two buttegs:
for the formula with denominatat; ande,, 4 for the formula with
denominatom — 1.
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Further reading

There are many, many, many books on statistics. Two very gentle books,
Intended mainly for social science students, are:

P. Hinton First Steps in Statistics
Statistics Explained D. B. Wright
Routledge, London, 1995 SAGE publications, 2002

These are good for the formula-shy reader.

Two entertaining books (the first a classic, the second rather recent), full of
examples of how statistics are often misused in practice, are:

D. Huff M. Blastland and A. Dilnot
How to Lie with Statistics The Tiger That Isn’t
Victor Gollancz, 1954 Profile Books, 2008
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Several variables

Often, one wants to relate data in several variables (i.e., multi-dimensional

data).

For example, the table below tabulates, for eight students (A—H), their
weekly time (in hours) spent: studying for Data & Analysis, drinking and
eating. This is juxtaposed with their Data & Analysis exam results.

A

F G H

Study 0.5

Drinking | 25 20 22

Eating 4

Exam 16 35 42

14 12 22 24 3 35
14 5 2 4

8
60 72 85 95

35 6 5

Thus, we have four variables: study, drinking, eating and exam.

(This is four-dimensional data.)
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Correlation

We can ask if there is anglationshipbetween the values taken by two
variables.

If there is no relationship, then the variables are said tmtependent
If there is a relationship, then the variables are said todve=lated

Caution:A correlation doesiotimply a causal relationshigbetween one
variable and another. For example, there is a positive correlation between
Incidences of lung cancer and time spent watching television, but neither
causes the other.

However, in cases in which theiea causal relationship between two
variables, then there often will be an associated correlation between the
variables.
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Visualising correlations
One way of discovering correlations is to visualise the data.

A simple visual guide is to draw scatter plotusing one variable for the
x-axis and one for thg-axis.

Example: In the example data on Slide V: 25, is there a correlation between
study hours and exam results? What about between drinking hours and
exam results? What about eating and exam results?
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Studying vs. exam results

100

a0

a0

o
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exam result
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30

20

1] 0.5 1 1.5 2 2.5 3 35 4
weekly study hours

This looks like apositivecorrelation.
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Drinking vs. exam results
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1] 5 10 15 20 25 30
weekly drinking haours

This looks like anegativecorrelation.
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Eating vs. exam results
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sweekly eating hours

There iIs no obvious correlation.
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Statistical hypothesis testing

The last three slides use data visualisation as a tool for postulating
hypotheses about data.

One might also postulate hypotheses for other reasons, e.g.: intuition that a
hypothesis may be true; a perceived analogy with another situation in which
a similar hypothesis is known to be valid; existence of a theoretical model
that makes a prediction; etc.

Statistics provides the tools needed to corroborate or refute such hypotheses
with scientific rigour:statistical tests
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The general form of a statistical test

One applies an appropriately chosen statistical test to the data and calculates
the resultR.

Statistical tests are usually based amé hypothesighat there is nothing
out of the ordinary about the data.

The resultR of the test has an associat@bability valuep.

The valuep represents the probability that we would obtain a result similar
to R if the null hypothesis were true.

N.B., p is notthe probability that the null hypothesis is true. This is not a
guantifiable value.
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The general form of a statistical test (continued)

The valuep represents the probability that we would obtain a result similar
to R if the null hypothesis were true.

If the value ofp is significantly smalthen we conclude that the null
hypothesis is a poor explanation for our data. Thuseyectthe null
hypothesis, and replace it with a better explanation for our data.

Standardsignificance thresholdare to requirep < 0.05 (i.e., there is a
less tharl /20 chance that we would have obtained our test result were the

null hypothesis true) or, bettgw, < 0.01 (i.e., there is a less thary 100
chance)
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Correlation coefficient

Thecorrelation coefficienis a statistical measure of how closely the data
valueszq, ..., x N are correlated withy;, ..., yn.

Let ., ando,, be the mean and standard deviation ofdhealues.
Let u,, ando,, be the mean and standard deviation ofghealues.

The corelation coefficient,, ,, is defined by:

SN (s — pa) (Y — py)
Noyo,

Px,y —

If ps., IS close tol this suggests, y arepositively correlated
If po., IS close to—1 this suggests, y arenegatively correlated
If p2, IS ClOose to0 this suggests there is no correlation.
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Correlation coefficient as a statistical test

In a test for correlation between two variabtesy (e.g., exam result and
study hours), we are looking for a correlation and a direction for the
correlation (either negative or positive) between the variables.

Thenull hypothesiss that there is no correlation.
We calculate the correlation coefficigny ,,.

We then look up significance inaitical values tablefor the correlation
coefficient. Such tables can be found in statistics books (and on the Web).
This gives us the associated probability vatue

The value ofp tells us whether we have significant grounds for rejecting the
null hypothesis, in which case our better explanation is that tkexe
correlation.
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Critical values table for the correlation coefficient

The table has rows falV values and columns fgr values.

N|p=0.1|p=0.05|p=0.01|p=0.001
7 | 0.669 | 0.754 0.875 0.951
8 | 0.621 | 0.707 0.834 0.925
9 | 0.582 | 0.666 0.798 0.898

The table shows that faV = 8 a value of|p; | > 0.875 has probability
p < 0.01 of occurring (that is less thanlg/ 100 chance of occurring) if
the null hypothesis is true.

Similarly, for N = 8 a value of|p,,,,| > 0.925 has probability
p < 0.001 of occurring (that is less thanlg/1000 chance of occurring) if
the null hypothesis is true.
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Studying vs. exam results

We use the data from V: 25 (see also V: 28), with the study values for
T1,..., XN, and the exam values fan, ..., yn, whereN = 8.

The relevant statistics are:

y = 1.9 o, = 0.981
fy, = 56.25 o, = 24.979
Py = 0.985

Our value 0f0.985 is (much) higher than the critical val@e925. Thus we
reject the null hypothesis with very high confidenpe< 0.001) and
conclude that there is a correlation.

It is a positive correlation sincg,,, is close tol not to —1.
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Drinking vs. exam results

We now use the drinking values from V: 25 (see also V: 29) as the values for
x1,...,xg. (They values are unchanged.)

The new statistics are:
pe = 12.75 o, = 8.288 Pz, = —0.914

Since| — 0.914| = 0.914 > 8.288, we can reject the null hypothesis
with confidence® < 0.01). This result is still significant though less so
than the previous.

This time, the value-0.914 of p.. ,, is close to—1 so we conclude that the
correlation is negative.
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Estimating correlation from a sample

As on slides V: 20-21, assume sampigs. . ., €, andyy, ..., y, from
a population of sizéV wheren << N.

Let 1, andp,, be the means of the andy values.
Let s, ands,, be the estimates of standard deviation, as on V: 21.

The best estimate,, ,, of the correlation coefficient is given by:

D i1 (@i — 1a) (Yi — py)
(n — 1)s58,

e,y =

The correlation coefficient is sometimes calfeshrson’s correlation
coefficienf particularly when it is estimated from a sample using the
formula above.
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Correlation coefficient — subtleties

The correlation coefficient measures how close a scatter plet givalues

IS to a straight line. Nonetheless, a high correlation does not mean that the
relationship betweem, y is linear. It just means it can be reasonably
closely approximated by a linear relationship.

Critical value tables for the correlation coefficient are often given with rows
Indexed bydegrees of freedomather than byV. For the correlation
coefficient, the number afegrees of freedoms IN — 2, so it is easy to
translate such a table into the form given here. (The notion of degree of
freedom, in the case of correlation, is too subtle a concept to explain here.)

Also, critical value tables often have two classifications: onefa-tailed
testsand one fortwo-tailed testsHere, we are applyingiavo-tailed test
we consider values close 1oandvalues close te-1 as significant. In a
one-tailedtest, we would be interested in just one of these possibilities.
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Thex? test

While the correlation coefficient, introduced in the previous lecture, is a
useful statistical test for correlation, it is applicable only to numerical data
(both interval and ratio scales).

Thex? (chi-squared) tesis a general tool for investigating correlations
betweercategorical data

We shall illustrate they? test with the following example.

Is there any correlation, in a class of students enrolled on a course,
between submitting the coursework for the course and attending
the course exam?
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General approach
The investigation will conform to the usual pattern of a statistical test.

Thenull hypothesiss that there is no relationship between coursework
submission and exam attendance.

Thex? test will allow us to compute the probabiligythat the data we see
might occur were the null hypothesis true.

Once again, ip is signifcantly low, we reject the null hypothesis, and we
conclude that there is a relationship between coursework submission and
exam attendance.

To begin, we use the data to compile@tingency tablef frequency
observation€;;.
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Contingency table

O;; | sub —sub
aftt 011 012
—aft 021 022

014 is number of students who submitted coursework and attended the
exam.

0> 1S number of students who did not submit coursework, but attended the
exam.

051 1S number of students who submitted coursework, but did not attend
the exam.

O-- IS number of students who neither submitted coursework nor attended
exam.
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Worked example

O;; sub —sub
att 011 = 94 012 = 20
—att 021 = 2 022 = 15

014 is number of students who submitted coursework and attended the
exam.

0> 1S number of students who did not submit coursework, but attended the
exam.

051 1S number of students who submitted coursework, but did not attend
the exam.

O-- IS number of students who neither submitted coursework nor attended
exam.
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ldea ofx? test
The observation€;; are the actual data frequencies

We use these to calculagepected frequencids;;, i.e., the frequencies we
would have expected to see were the null hypothesis true.

Thex? test is calculated by comparing the actual frequency to the expected
frequency.

The larger the disrepancy between these two values, the more improbable it
IS that the data could have arisen were the null hypothesis true.

Thus a large discrepancy allows us to reject the null hypothesis and
conclude that there is likely to be a correlation.
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Marginals

To compute the expected frequencies, we first computetirginals
R., R>, B, B> of the observation table.

Or,;j sub —sub
att 011 012 Rl — 011 + 012
—att O2; O22 Ry = O21 4+ Oa22
B1 =011 +021 Bz =012+ 022 N
Here

N = R1—|—R2 — B1+B2

Part V. Statistical Analysis of Data

V.3: x? and collocations



Inf1l, Data & Analysis, 2009 V.48 / 61

Marginals explained

The marginals an@N are very simple.
e B, is the number of students who submitted coursework.
e B, is the number of students who did not submit coursework.
e R; isthe number of students who attended the exam.
e R isthe number of students who did not attend the exam.
e NN is the total number of students registered for the course.

Given these figures, if there were no relationship between submitting
coursework and attending the exam, we would expect the number of

students doing both to be
B1 R,

N
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Expected frequencies

Theexpected frequencids;; are now calculated as follows.

sub —sub

att

—att

Eiys = Bi1Ry/N FEi2 = BsR;/N
E;y = BiR;/N Es2 = BoR2/N

Ry = Eq1 + Erq2
Ry = Eg1 + Eaa

Bi1 = F11 + E21 Bz = Eq2 + Ea

N

Notice that this table has the same marginals as the original.
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Thex? value

We can now define thg? value by:

2 (0i5 — E;j5)?
X = Z Efij

,J

(O11—E11)? 4 (O12— Eq12)? n (O21 — E21)? + (O22 — E23)?
FEiq4 E;2 E2q E>-

N.B. It is always the case that:

(O11—E11)? = (0O12—E13)?2 = (031 —E3;)? = (O22— E33)?

This fact is helpful in simplifyingy? calculations.

Mathematical ExerciseWhy are thesd values always equal?
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Worked example (continued)

Marginals:
O;; | sub —sub
att | 94 20 | 114
—att | 2 15 17
96 35 | 131
Expected values:
E;; sub —sub
att | 83.542 30.458 | 114
—att | 12.458 4.542 17
96 35 131
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Worked example (continued)

10.4582 N 10.4582 N 10.4582 N 10.4582
83.542 30.458 12.458 4.542

109.370 n 109.370 n 109.370 n 109.370
83.542 30.458 12.458 4.542

= 1.309 4 3.591 4 8.779 + 24.081

= 37.76
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Critical values fory? test

For ax? test based on 2 x 2 contingency table, the critical values are:

p 0.1 0.05 | 0.01 | 0.001
x2 || 2.706 | 3.841 | 6.635 | 10.828

Interpretation of tabletf the null hypothesis were true then:
e The probability of thex? value exceedin@.706 would bep = 0.1.
e The probability of thex? value exceeding.841 would bep = 0.05.
e The probability of thex? value exceeding.635 would bep = 0.01.

e The probability of thex? value exceedind0.828 would be
p = 0.001.
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Worked example (concluded)
In our worked example, we haye? = 37.76 > 10.828,

In this case, we can reject the null hypothesis with very high confidence
(p < 0.001).

In fact sincex? = 37.76 >> 10.828 we have confidencg << 0.001

We conclude that, at according to our data, there is a strong correlation
between coursework submission and exam attendance.
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x? test — subtle points

In critical value tables for thg? test, the entries are usually classified by
degrees of freedontror anm X m contingency table, there are

(m — 1) X (n — 1) degrees of freedom. (This can be understood as
follows. Given fixed marginals, onggn — 1) X (n — 1) entries in the
table are completed, the remaining + n — 1 entries are completely
determined.)

The values in the table on slide 13.53 are thosd fdegree of freedom, and
are thus the correct values foRax 2 table.

Thex? test for a2 x 2 table is considered unreliable wh&his small (e.qg.
less thart0) and at least one of the four expected values is lessiham
such situations, a modificatiorates correctionis sometimes applied. (The
details are beyond the scope of this course.)
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Application 2: finding collocations

Recall from Part Il that @ollocationis a sequence of words that occurs
atypically often in language usage. Examples wetgng tearun amok
make up bitter sweetetc.

Using thex? test we can use corpus data to investigate whether a given
n-gram is a collocation. For simplicity, we focus on bigrams. (N.B. All the
examples above are bigrams.)

Given a bigramw, ws, we use a corpus to investigate whether the words
wy wo appear together atypically often.

Again we shall apply the?-test. So first we need to construct the relevant
contingency table.
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Contingency table for bigrams

Oij w1 W1

W2 Oq11 = f(’wl ’wz) Oq12 = f(—"wl wz)

—wg | O21 = f(’wl —'wz) Oz = f(—"wl —'”wz)

f (w1 w2) is frequency ofw; w- in the corpus.

f (—wy ws) is number of bigram occurrences in corpus in which the
second word i3v4 but the first word is notv;. (N.B. If the same bigram
appears: times in the corpus then this countsraslifferent occurrences.)

f (w1 —~ws) is number of bigram occurrences in corpus in which the first
word isw; but the second word is nad-.

f (—wy —ws) is number of bigram occurrences in corpus in which the first
word is notw; and the second is nab-.
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Worked example 2

Recall from note I11.3 that the bigrastrong desireoccurred 10 times in the
CQP Dickens corpus.

We shall investigate whethetrong desiras a collocation.
The full contingency table is:
O;; strong -—strong

desire | 10 214
—desire| 655 3407085
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Worked example 2 (continued)

Marginals:
O;; strong -—strong
desire | 10 214 224
—desire| 655 3407085 | 3407740
665 3407299 | 3407964
Expected values:
E;; strong —strong
desire | 0.044 223.956 224
—desire| 664.956 3407075.044 | 3407740
665 3407299 3407964
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Worked example 2 (continued)

9.9562 N 9.9562 N 9.9562 N 9.9562
0.044 223.956 664.956 3407075.044

99.122 n 99.122 n 99.122 n 99.122
0.044 223.956 664.956 3407075.044

= 2252.773 4+ 0.443 4 0.149 + 0.000

= 2253.365
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Worked example 2 (concluded)
In our worked example, we haye? = 2253.365 > 10.828,

In this case, we can reject the null hypothesis with very high confidence
(p < 0.001).

In fact sincex? = 2253.365 >> 10.828 we have confidence
p << 0.001

We conclude that, at least according to the Dickens corpus, the bigram
strong desiras (rightly!) identified as a (highly probable) collocation.
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