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Analysis of data

There are many reasons toanalysedata.

Two common goals of analysis:

• Discover implicit structure in the data.

E.g., find patterns in empirical data (such as experimental data).

• Confirm or refute a hypothesis about the data.

E.g., confirm or refute an experimental hypothesis.

Statisticsprovides a powerful and ubiquitous toolkit for performing such

analyses.
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Data scales

The type of analysis performed (obviously) depends on:

• The reason for wishing to carry out the analysis.

• The type of data to hand.

For example, the data may bequantitative(i.e., numerical), or it may be
qualitative(i.e., descriptive).

One important aspect of the kind of data is the form ofdata scaleit belongs
to:

• Categorical(also callednominal) andOrdinal scales (for qualitative
data).

• Interval and ratioscales (for quantitative data).

This affects the ways in which we can manipulate data.
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Categorical scales

Data belongs to acategorical scaleif eachdatum(i.e., data item ) is

classified as belonging to one of a fixed number categories.

Example: The British Government (presumably) classifies Visa

applications according to the nationality of the applicant. This classification

is a categorical scale: the categories are the different possible nationalities.

Example: Insurance companies classify some insurance applications (e.g.,

home, possessions, car) according to the postcode of the applicant (since

different postcodes have different risk assessments).

Categorical scales are sometimes callednominal scales, especially in cases

in which the value of a datum is a name.
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Ordinal scales

Data belongs to anordinal scaleif it has an associated ordering but

arithmetic transformations on the data are not meaningful.

Example: TheBeaufort wind force scaleclassifies wind speeds on a scale

from 0 (calm) to12 (hurricane). This has an obvious associated ordering,

but it does not make sense to perform arithmetic operations on this scale.

E.g., it does not make much sense to say that scale6 (strong breeze) is the

average of calm and hurricane force.

Example: In many institutions, exam marks are recorded as grades (e.g.,

A,B,. . . , G) rather than as marks. Again the ordering is clear, but one does

not perform arithmetic operations on the scale.
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Interval scales

An interval scaleis a numerical scale (usually with real number values) in

which we are interested inrelative valuerather thanabsolute value.

Example: Points in time are given relative to an arbitrarily chosen zero

point. We can make sense of comparisons such as: momentx is 2009 years

later than momenty. But it does not make sense to say: momentx is twice

as large as momentz.

Mathematically, interval scales support the operations of subtraction

(returning a real number for this) and weighted average.

Interval scales do not support the operations of addition and multiplication.
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Ratio scales

A ratio scaleis a numerical scale (again usually with real number values) in

which there is a notion ofabsolute value.

Example: Most physical quantities such as mass, energy and length are

measured on ratio scales. So is temperature if measured in kelvins (i.e.

relative to absolute zero).

Like interval scales, ratio scales support the operations of subtraction and

weighted average. They also support the operations of addition and of

multiplication by a real number.

Question for physics students:Is time a ratio scale if one uses the Big Bang

as its zero point?
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Visualising data

It is often helpful tovisualisedata by drawing achart or plotting agraphof

the data.

Visualisations can help us guess properties of the data, whose existence we

can then explore mathematically using statistical tools.

For a collection of data of a categorical or ordinal scale, a natural visual

representation is ahistogram(or bar chart), which, for each category,

displays the number of occurrences of the category in the data.

For a collection of data from an interval or ratio scale, one plots agraph

with the data scale as thex-axis and the frequency as they-axis.

It is very common for such a graph to take a bell-shaped appearence.
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Normal distribution

In anormal distribution, the data is clustered symmetrically around a
central value (zero in the graph below), and takes the bell-shaped
appearance below.

Part V: Statistical Analysis of Data V.1: Data scales and summary statistics



Inf1, Data & Analysis, 2009 V: 11 / 61

Normal distribution (continued)

There are two crucial values associated with the normal distribution.

Themean, µ, is the central value around which the data is clustered. In the
example, we haveµ = 0.

Thestandard deviation, σ, is the distance from the mean to the point at
which the curve changes from beingconvexto beingconcave. In the
example, we haveσ = 1. The larger the standard deviation, the larger the
spreadof data.

The general equation for a normal distribution is

y = c e− (x−µ)2

2σ2

(You do not need to remember this formula.)
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Statistic(s)

A statisticis a (usually numerical) value that captures some property of

data.

For example, the mean of a normal distribution is a statistic that captures the

value around which the data is clustered.

Similarly, the standard deviation of a normal distribution is a statistic that

captures the degree of spread of the data around its mean.

The notion ofmeanandstandard deviationgeneralise to data that is not

normally distributed.

There are also other,modeandmedian, which are alternatives to the mean

for capturing the “focal point” of data.
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Mode

Summary statisticssummarise a property of a data set in a single value.

Given data valuesx1, x2, . . . , xN , themode(or modes) is the value (or

values)x that occurs most often inx1, x2, . . . , xN .

Example: Given data:6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, the mode is6, which is

the only value to occur three times.

The mode makes sense for all types of data scale. However, it is not

particularly informative for real-number-valued quantitative data, where it is

unlikely for the same data value to occur more than once.

(This is an instance of a more general phenomenon. In many circumstances,

it is neither useful nor meaningful to compare real-number values for

equality.)
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Median

Given data valuesx1, x2, . . . , xN , written in non-decreasing order, the

medianis the middle valuex
( N+1

2 )
assumingN is odd. IfN is even, then

any data value betweenx( N
2 ) andx( N

2 +1) inclusive is a possiblemedian.

Example: Given data:6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, we write this in

non-decreasing order:

1, 1, 2, 2, 3, 5, 5, 6, 6, 6, 7

The middle value is the sixth value5.

The median makes sense for ordinal data and for interval and ratio data. It

does not make sense for categorical data, because categorical data has no

associated order.
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Mean

Given data valuesx1, x2, . . . , xN , themeanµ is the value:

µ =

∑N
i=1 xi

N

Example: Given data:6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, the mean is

6 + 2 + 3 + 6 + 1 + 5 + 1 + 7 + 2 + 5 + 6

11
= 4.

Although the formula for the mean involves a sum, the mean makes sense
for both interval and ratio scales. The reason it makes sense for data on an
interval scale is that interval scales supportweighted averages, and a mean
is simply an equally-weighted average (all weights are set as1

N
).

The mean doesnot make sense for categorical and ordinal data.
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Variance and standard deviation

Given data valuesx1, x2, . . . , xN , with meanµ, thevariance, written
Var or σ2, is the value:

Var =

∑n
i=1(xi − µ)2

N

Thestandard deviation, writtenσ, is defined by:

σ =
√

Var =

√∑n
i=1(xi − µ)2

N

Like the mean, the standard deviation makes sense for both interval and
ratio data. (The values that are squared are real numbers, so, even with
interval data, there is no issue about performing the multiplication.)
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Variance and standard deviation (example)

Given data:6, 2, 3, 6, 1, 5, 1, 7, 2, 5, 6, we haveµ = 4.

Var =
22 + 22 + 12 + 22 + 32 + 12 + 32 + 32 + 22 + 12 + 22

11

=
4 + 4 + 1 + 4 + 9 + 1 + 9 + 9 + 4 + 1 + 4

11

=
50

11
= 4.55 (to 2 decimal places)

σ =

√
50

11

= 2.13 (to 2 decimal places)
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Populations and samples

The discussion of statistics so far has been all about computing various
statistics for a given set of data.

Often, however, we are interested in knowing the value of the statistic for a
wholepopulationfrom which our data is just asample.

Examples:

• Experiments in social sciences where one wants to discover some
general property of a section of the population (e.g., teenagers).

• Surveys (e.g., marketing surveys, opinion polls, etc.).

• In software design, understanding requirements of users, based on
questioning a sample of potential users.

In such cases it is totally impracticable to obtain exhaustive data about the
population as a whole. So we are forced to obtain data about a sample.

Part V: Statistical Analysis of Data V.1: Data scales and summary statistics



Inf1, Data & Analysis, 2009 V: 19 / 61

Sampling

There are important guidelines to follow in choosing a sample from a
population.

• The sample should be chosenrandomlyfrom the population.

• The sample should be aslargeas is practically possible (given
constraints on gathering data, storing data and calculating with data).

These two guidelines are designed to improve the likelihood that the sample
is representativeof the population. In particular, they minimise the chance
of accidentally building abias into the sample.

Given a sample, one calculates statistical properties of the sample, and uses
these to infer likely statistical properties of the whole population.

Important topics in statistics (beyond the scope of D&A) aremaximising

andquantifyingthe reliability of such techniques.
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Estimating statistics for a population given a sample

Tyically one has a (hopefully representative) samplex1, . . . , xn from a

population of sizeN wheren << N (i.e.,n is much smaller thatN ).

We use the samplex1, . . . , xn to estimate statistical values for the whole

population.

Sometimes the calculation is the expected one, sometimes it isn’t.

To estimate themeanof the population, calculate

µ =

∑n
i=1 xi

n

As expected, this is just the mean of the sample.
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Estimating variance and standard deviation of population

To estimate thevarianceof the population, calculate∑n
i=1(xi − µ)2

n − 1

The best estimates of thestandard deviationof the population, is:

s =

√∑n
i=1(xi − µ)2

n − 1

N.B. These values arenot simply the variance and standard deviation of the

sample. In both cases, the expected denominator ofn has been replaced by

n − 1. This gives a better estimate in general whenn << N .
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Caution

The use of samples to estimate statistics of populations is so common that

the formula on the previous slide is very often the one needed when

calculating standard deviations.

Its usage is so widespread that sometimes it is wrongly given as the

definition of standard deviation.

The existence of two different formulas for calculating the standard

deviation in different circumstances can lead to confusion. So one needs to

take care.

Sometimes calculators make both formulas available via two buttons:σn

for the formula with denominatorn; andσn−1 for the formula with

denominatorn − 1.
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Further reading

There are many, many, many books on statistics. Two very gentle books,

intended mainly for social science students, are:

P. Hinton

Statistics Explained

Routledge, London, 1995

First Steps in Statistics

D. B. Wright

SAGE publications, 2002

These are good for the formula-shy reader.

Two entertaining books (the first a classic, the second rather recent), full of

examples of how statistics are often misused in practice, are:

D. Huff

How to Lie with Statistics

Victor Gollancz, 1954

M. Blastland and A. Dilnot

The Tiger That Isn’t

Profile Books, 2008
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Several variables

Often, one wants to relate data in several variables (i.e., multi-dimensional
data).

For example, the table below tabulates, for eight students (A–H), their
weekly time (in hours) spent: studying for Data & Analysis, drinking and
eating. This is juxtaposed with their Data & Analysis exam results.

A B C D E F G H

Study 0.5 1 1.4 1.2 2.2 2.4 3 3.5

Drinking 25 20 22 10 14 5 2 4

Eating 4 7 4.5 5 8 3.5 6 5

Exam 16 35 42 45 60 72 85 95

Thus, we have four variables: study, drinking, eating and exam.
(This is four-dimensional data.)
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Correlation

We can ask if there is anyrelationshipbetween the values taken by two

variables.

If there is no relationship, then the variables are said to beindependent.

If there is a relationship, then the variables are said to becorrelated.

Caution:A correlation doesnot imply acausal relationshipbetween one

variable and another. For example, there is a positive correlation between

incidences of lung cancer and time spent watching television, but neither

causes the other.

However, in cases in which thereis a causal relationship between two

variables, then there often will be an associated correlation between the

variables.
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Visualising correlations

One way of discovering correlations is to visualise the data.

A simple visual guide is to draw ascatter plotusing one variable for the

x-axis and one for they-axis.

Example: In the example data on Slide V: 25, is there a correlation between

study hours and exam results? What about between drinking hours and

exam results? What about eating and exam results?
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Studying vs. exam results

This looks like apositivecorrelation.
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Drinking vs. exam results

This looks like anegativecorrelation.
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Eating vs. exam results

There is no obvious correlation.
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Statistical hypothesis testing

The last three slides use data visualisation as a tool for postulating

hypotheses about data.

One might also postulate hypotheses for other reasons, e.g.: intuition that a

hypothesis may be true; a perceived analogy with another situation in which

a similar hypothesis is known to be valid; existence of a theoretical model

that makes a prediction; etc.

Statistics provides the tools needed to corroborate or refute such hypotheses

with scientific rigour:statistical tests.
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The general form of a statistical test

One applies an appropriately chosen statistical test to the data and calculates

the resultR.

Statistical tests are usually based on anull hypothesisthat there is nothing

out of the ordinary about the data.

The resultR of the test has an associatedprobability valuep.

The valuep represents the probability that we would obtain a result similar

to R if the null hypothesis were true.

N.B., p is not the probability that the null hypothesis is true. This is not a

quantifiable value.
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The general form of a statistical test (continued)

The valuep represents the probability that we would obtain a result similar

to R if the null hypothesis were true.

If the value ofp is significantly smallthen we conclude that the null

hypothesis is a poor explanation for our data. Thus wereject the null

hypothesis, and replace it with a better explanation for our data.

Standardsignificance thresholdsare to requirep < 0.05 (i.e., there is a

less than1/20 chance that we would have obtained our test result were the

null hypothesis true) or, better,p < 0.01 (i.e., there is a less than1/100
chance)
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Correlation coefficient

Thecorrelation coefficientis a statistical measure of how closely the data
valuesx1, . . . , xN are correlated withy1, . . . , yN .

Let µx andσx be the mean and standard deviation of thex values.
Let µy andσy be the mean and standard deviation of they values.

The corelation coefficientρx,y is defined by:

ρx,y =

∑N
i=1(xi − µx)(yi − µy)

Nσxσy

If ρx,y is close to1 this suggestsx, y arepositively correlated.
If ρx,y is close to−1 this suggestsx, y arenegatively correlated.
If ρx,y is close to0 this suggests there is no correlation.
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Correlation coefficient as a statistical test

In a test for correlation between two variablesx, y (e.g., exam result and

study hours), we are looking for a correlation and a direction for the

correlation (either negative or positive) between the variables.

Thenull hypothesisis that there is no correlation.

We calculate the correlation coefficientρx,y.

We then look up significance in acritical values tablefor the correlation

coefficient. Such tables can be found in statistics books (and on the Web).

This gives us the associated probability valuep.

The value ofp tells us whether we have significant grounds for rejecting the

null hypothesis, in which case our better explanation is that thereis a

correlation.
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Critical values table for the correlation coefficient

The table has rows forN values and columns forp values.

N p = 0.1 p = 0.05 p = 0.01 p = 0.001

7 0.669 0.754 0.875 0.951

8 0.621 0.707 0.834 0.925

9 0.582 0.666 0.798 0.898

The table shows that forN = 8 a value of|ρx,y| > 0.875 has probability
p < 0.01 of occurring (that is less than a1/100 chance of occurring) if
the null hypothesis is true.

Similarly, for N = 8 a value of|ρx,y| > 0.925 has probability
p < 0.001 of occurring (that is less than a1/1000 chance of occurring) if
the null hypothesis is true.
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Studying vs. exam results

We use the data from V: 25 (see also V: 28), with the study values for

x1, . . . , xN , and the exam values fory1, . . . , yN , whereN = 8.

The relevant statistics are:

µx = 1.9 σx = 0.981

µy = 56.25 σy = 24.979

ρx,y = 0.985

Our value of0.985 is (much) higher than the critical value0.925. Thus we

reject the null hypothesis with very high confidence (p < 0.001) and

conclude that there is a correlation.

It is a positive correlation sinceρx,y is close to1 not to−1.
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Drinking vs. exam results

We now use the drinking values from V: 25 (see also V: 29) as the values for

x1, . . . , x8. (They values are unchanged.)

The new statistics are:

µx = 12.75 σx = 8.288 ρx,y = −0.914

Since| − 0.914| = 0.914 > 8.288, we can reject the null hypothesis

with confidence (p < 0.01). This result is still significant though less so

than the previous.

This time, the value−0.914 of ρx,y is close to−1 so we conclude that the

correlation is negative.

Part V: Statistical Analysis of Data V.2: Hypothesis testing and correlation



Inf1, Data & Analysis, 2009 V: 39 / 61

Estimating correlation from a sample

As on slides V: 20–21, assume samplesx1, . . . , xn andy1, . . . , yn from

a population of sizeN wheren << N .

Let µx andµy be the means of thex andy values.

Let sx andsy be the estimates of standard deviation, as on V: 21.

The best estimaterx,y of the correlation coefficient is given by:

rx,y =

∑n
i=1(xi − µx)(yi − µy)

(n − 1)sxsy

The correlation coefficient is sometimes calledPearson’s correlation

coefficient, particularly when it is estimated from a sample using the

formula above.
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Correlation coefficient — subtleties

The correlation coefficient measures how close a scatter plot ofx, y values
is to a straight line. Nonetheless, a high correlation does not mean that the
relationship betweenx, y is linear. It just means it can be reasonably
closely approximated by a linear relationship.

Critical value tables for the correlation coefficient are often given with rows
indexed bydegrees of freedomrather than byN . For the correlation
coefficient, the number ofdegrees of freedomis N − 2, so it is easy to
translate such a table into the form given here. (The notion of degree of
freedom, in the case of correlation, is too subtle a concept to explain here.)

Also, critical value tables often have two classifications: one forone-tailed

testsand one fortwo-tailed tests. Here, we are applying atwo-tailed test:
we consider values close to1 andvalues close to−1 as significant. In a
one-tailedtest, we would be interested in just one of these possibilities.
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Theχ2 test

While the correlation coefficient, introduced in the previous lecture, is a

useful statistical test for correlation, it is applicable only to numerical data

(both interval and ratio scales).

Theχ2 (chi-squared) testis a general tool for investigating correlations

betweencategorical data.

We shall illustrate theχ2 test with the following example.

Is there any correlation, in a class of students enrolled on a course,

between submitting the coursework for the course and attending

the course exam?
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General approach

The investigation will conform to the usual pattern of a statistical test.

Thenull hypothesisis that there is no relationship between coursework

submission and exam attendance.

Theχ2 test will allow us to compute the probabilityp that the data we see

might occur were the null hypothesis true.

Once again, ifp is signifcantly low, we reject the null hypothesis, and we

conclude that there is a relationship between coursework submission and

exam attendance.

To begin, we use the data to compile acontingency tableof frequency

observationsOij .
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Contingency table

Oij sub ¬sub

att O11 O12

¬att O21 O22

O11 is number of students who submitted coursework and attended the
exam.

O12 is number of students who did not submit coursework, but attended the
exam.

O21 is number of students who submitted coursework, but did not attend
the exam.

O22 is number of students who neither submitted coursework nor attended
exam.
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Worked example

Oij sub ¬sub

att O11 = 94 O12 = 20

¬att O21 = 2 O22 = 15

O11 is number of students who submitted coursework and attended the
exam.

O12 is number of students who did not submit coursework, but attended the
exam.

O21 is number of students who submitted coursework, but did not attend
the exam.

O22 is number of students who neither submitted coursework nor attended
exam.
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Idea ofχ2 test

The observationsOij are the actual data frequencies

We use these to calculateexpected frequenciesEij , i.e., the frequencies we

would have expected to see were the null hypothesis true.

Theχ2 test is calculated by comparing the actual frequency to the expected

frequency.

The larger the disrepancy between these two values, the more improbable it

is that the data could have arisen were the null hypothesis true.

Thus a large discrepancy allows us to reject the null hypothesis and

conclude that there is likely to be a correlation.
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Marginals

To compute the expected frequencies, we first compute themarginals

R1, R2, B1, B2 of the observation table.

Oij sub ¬sub

att O11 O12 R1 = O11 + O12

¬att O21 O22 R2 = O21 + O22

B1 = O11 + O21 B2 = O12 + O22 N

Here

N = R1 + R2 = B1 + B2
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Marginals explained

The marginals andN are very simple.

• B1 is the number of students who submitted coursework.

• B2 is the number of students who did not submit coursework.

• R1 is the number of students who attended the exam.

• R2 is the number of students who did not attend the exam.

• N is the total number of students registered for the course.

Given these figures, if there were no relationship between submitting
coursework and attending the exam, we would expect the number of
students doing both to be

B1R1

N
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Expected frequencies

Theexpected frequenciesEij are now calculated as follows.

Eij sub ¬sub

att E11 = B1R1/N E12 = B2R1/N R1 = E11 + E12

¬att E21 = B1R2/N E22 = B2R2/N R2 = E21 + E22

B1 = E11 + E21 B2 = E12 + E22 N

Notice that this table has the same marginals as the original.
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Theχ2 value

We can now define theχ2 value by:

χ2 =
∑
i,j

(Oij − Eij)2

Eij

=
(O11−E11)2

E11

+
(O12−E12)2

E12

+
(O21−E21)2

E21

+
(O22−E22)2

E22

N.B. It is always the case that:

(O11−E11)2 = (O12−E12)2 = (O21−E21)2 = (O22−E22)2

This fact is helpful in simplifyingχ2 calculations.

Mathematical Exercise.Why are these4 values always equal?
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Worked example (continued)

Marginals:

Oij sub ¬sub

att 94 20 114

¬att 2 15 17

96 35 131

Expected values:

Eij sub ¬sub

att 83.542 30.458 114

¬att 12.458 4.542 17

96 35 131
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Worked example (continued)

χ2 =
10.4582

83.542
+

10.4582

30.458
+

10.4582

12.458
+

10.4582

4.542

=
109.370

83.542
+

109.370

30.458
+

109.370

12.458
+

109.370

4.542

= 1.309 + 3.591 + 8.779 + 24.081

= 37.76
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Critical values forχ2 test

For aχ2 test based on a2 × 2 contingency table, the critical values are:

p 0.1 0.05 0.01 0.001

χ2 2.706 3.841 6.635 10.828

Interpretation of table:If the null hypothesis were true then:

• The probability of theχ2 value exceeding2.706 would bep = 0.1.

• The probability of theχ2 value exceeding3.841 would bep = 0.05.

• The probability of theχ2 value exceeding6.635 would bep = 0.01.

• The probability of theχ2 value exceeding10.828 would be

p = 0.001.
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Worked example (concluded)

In our worked example, we haveχ2 = 37.76 > 10.828,

In this case, we can reject the null hypothesis with very high confidence

(p < 0.001).

In fact sinceχ2 = 37.76 >> 10.828 we have confidencep << 0.001

We conclude that, at according to our data, there is a strong correlation

between coursework submission and exam attendance.
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χ2 test — subtle points

In critical value tables for theχ2 test, the entries are usually classified by

degrees of freedom. For anm × n contingency table, there are

(m − 1) × (n − 1) degrees of freedom. (This can be understood as

follows. Given fixed marginals, once(m − 1) × (n − 1) entries in the

table are completed, the remainingm + n − 1 entries are completely

determined.)

The values in the table on slide 13.53 are those for1 degree of freedom, and

are thus the correct values for a2 × 2 table.

Theχ2 test for a2 × 2 table is considered unreliable whenN is small (e.g.

less than40) and at least one of the four expected values is less than5. In

such situations, a modificationYates correction, is sometimes applied. (The

details are beyond the scope of this course.)
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Application 2: finding collocations

Recall from Part III that acollocationis a sequence of words that occurs

atypically often in language usage. Examples were:strong tea; run amok;

make up; bitter sweet, etc.

Using theχ2 test we can use corpus data to investigate whether a given

n-gram is a collocation. For simplicity, we focus on bigrams. (N.B. All the

examples above are bigrams.)

Given a bigramw1 w2, we use a corpus to investigate whether the words

w1 w2 appear together atypically often.

Again we shall apply theχ2-test. So first we need to construct the relevant

contingency table.
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Contingency table for bigrams

Oij w1 ¬w1

w2 O11 = f(w1 w2) O12 = f(¬w1 w2)

¬w2 O21 = f(w1 ¬w2) O22 = f(¬w1 ¬w2)

f(w1 w2) is frequency ofw1 w2 in the corpus.

f(¬w1 w2) is number of bigram occurrences in corpus in which the
second word isw2 but the first word is notw1. (N.B. If the same bigram
appearsn times in the corpus then this counts asn different occurrences.)

f(w1 ¬w2) is number of bigram occurrences in corpus in which the first
word isw1 but the second word is notw2.

f(¬w1 ¬w2) is number of bigram occurrences in corpus in which the first
word is notw1 and the second is notw2.
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Worked example 2

Recall from note III.3 that the bigramstrong desireoccurred 10 times in the

CQP Dickens corpus.

We shall investigate whetherstrong desireis a collocation.

The full contingency table is:

Oij strong ¬strong

desire 10 214

¬desire 655 3407085
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Worked example 2 (continued)

Marginals:

Oij strong ¬strong

desire 10 214 224

¬desire 655 3407085 3407740

665 3407299 3407964

Expected values:

Eij strong ¬strong

desire 0.044 223.956 224

¬desire 664.956 3407075.044 3407740

665 3407299 3407964
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Worked example 2 (continued)

χ2 =
9.9562

0.044
+

9.9562

223.956
+

9.9562

664.956
+

9.9562

3407075.044

=
99.122

0.044
+

99.122

223.956
+

99.122

664.956
+

99.122

3407075.044

= 2252.773 + 0.443 + 0.149 + 0.000

= 2253.365
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Worked example 2 (concluded)

In our worked example, we haveχ2 = 2253.365 > 10.828,

In this case, we can reject the null hypothesis with very high confidence

(p < 0.001).

In fact sinceχ2 = 2253.365 >> 10.828 we have confidence

p << 0.001

We conclude that, at least according to the Dickens corpus, the bigram

strong desireis (rightly!) identified as a (highly probable) collocation.
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