
Inf1, Data & Analysis, 2009 II: 1 / 67

Informatics 1, 2009
School of Informatics, University of Edinburgh

Data and Analysis

Part II
Semistructured Data

Alex Simpson

Part II: Semistructured Data

Inf1, Data & Analysis, 2009 II: 2 / 67

Recommended reading

[DMS] covers the main Part II topics, but rather superficially.

For a more in-depth treatment see:

[XWT] An Introduction to XML and Web Technologies

A. Møller and M. Schwartzbach

Addison Wesley, 2006

“A superb summary of the main Web technologies. It is broad and
deep giving you enough detail to get real work done. Eminently
readable with excellent examples and touches of humour. This
book is a gem.”

Prof. Philip Wadler, University of Edinburgh

Part II: Semistructured Data

Inf1, Data & Analysis, 2009 II: 3 / 67

Part II — Semistructured Data

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Recommended reading: Chapter 2 of [XWT]

pp. 227–231 of [DMS]

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 4 / 67

Background

Relational databases record data in tables conforming to relational
schemata. This imposes rigid structure on data

In many situations, it is useful to structure data in a less rigid way; for
example:

• when the data needs to be made publicly available in a standard and
easily readable data format;

• when we wish to mark up (i.e. annotate) existing unstructured data (e.g.
text) with additional information (e.g. semantic information);

• when the data possesses a natural hierarchical structure and/or the
structure of the data we wish to record varies from item to item.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 5 / 67

Semistructured data

Semistructured data imposes a loose structure on data, hence the choice of
terminology.

The principal structure imposed on data is that of a tree.

Before seeing how trees are used to structure data, we review basic
terminology for talking about trees.

Recall, a tree consists of a set of nodes, amongst which there is a unique
root node. For every node in the tree, there is a unique path from the root
node to the node.

Nodes separate into two disjoint classes: leaves and internal nodes.

Every node other than the root has a unique parent node. Every internal
node has a nonempty set of children nodes.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 6 / 67

Root node Leaves and internal nodes

Parent of A Children of A

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 7 / 67

Semistructured data models

Data is incorporated into a tree structure using a semistructured data model.

There are several different such data models.

We shall use the XPath data model (chosen because its structure
corresponds exactly to XML).

The next slide illustrates an example of data structured according to the
XPath data model.

The chosen example, a fragment of a gazetteer, is given because it is one
that is naturally accommodated within a hierarchical tree-based structure.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 8 / 67

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 9 / 67

Types of node in the XPath data model

Root node. This is the root of the tree. It is labelled /.

Element nodes. These are nodes labelled with element names, which serve
the purpose of categorising the data below them. In the example, the
element names are: Gazetteer, Country, Name, Population,
Capital, Region, and Feature. In the XPath data model, internal
nodes other than the root are always element nodes.

The root node is required to have a single element node as child, called the
root element (since it is root in the tree of all element nodes). In the
example, the root element is Gazetteer.

Text nodes. These are leaves of the tree where textual information is stored.
In the example, the text strings "Slovenia", "2,020,000",
"Ljubljana", "Gorenjska", "Triglav", "Bohinj" and "Špik"
appear at text nodes.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 10 / 67

Attribute nodes

Attribute nodes are leaves of the tree in which an attribute associated with
the parent element node is assigned a value. In the example, we use the @
symbol to identify attributes. There is a single attribute type, it is
associated with the Feature element, and it is assigned the text values
"Lake" and "Mountain".

In the XPath data model, attribute nodes are treated differently from other
nodes.

Although the parent of an attribute node is an element node, when we talk
about the children of this parent node, attribute nodes are not considered to
be amongst them.

Since this can be confusing, explicit warnings will be given in situations in
which confusion might arise.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 11 / 67

Understanding the tree

The meaning of the data at a text node depends on the element nodes that
appear along the path from the root of the tree to the leaf, and on the values
of the attributes to this node.

For example, the path to Bohinj is

/Gazetteer/Country/Region/Feature/

and the value of the type attribute of the associated Feature element is
"Lake". This tells us that Bohinj is a feature in a region in a country in the
gazetteer, and that the type of feature is a lake.

Note that to get further information (such as the name of the country,
Slovenia), we need to extract it by following another path within the
relevant ancestor element (in this case, the Country element).

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 12 / 67

Similarly, the meaning of an element node depends on the path to the node
from the root of the tree.

For example, the element Name is used in two different ways.

A path /Gazetteer/Country/Name/ leads to a text node containing
the name of a country.

A path /Gazetteer/Country/Region/Name/ leads to a text node
containing the name of a region.

XML is a text-based language for presenting exactly the same
tree-structured information as the XPath data model.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 13 / 67

Extensible Markup Language (XML)

This is a markup language, that is it provides a mechanism, based on
elements (also called tags), for annotating (marking up) ordinary text with
additional information.

It was developed in the mid 1990’s from the Standard General Markup
Language (SGML) and Hypertext Markup Language (HTML).

XML has a simple text-based format which provides a convenient basis for
making data widely available, e.g. over the web. Indeed, XML has become
the de facto standard for publishing data on the web.

The next slide presents the gazetteer example in XML format.

The content and structure are identical to that of the tree presented earlier.
Only the format is different.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 14 / 67

<Gazetteer>

<Country>

<Name>Slovenia</Name>

<Population>2,020,000</Population>

<Capital>Ljubljana</Capital>

<Region>

<Name>Gorenjska</Name>

<Feature type="Lake">Bohinj</Feature>

<Feature type="Mountain">Triglav</Feature>

<Feature type="Mountain">Špik</Feature>

</Region>

</Country>

<!-- data for other countries here -->

</Gazetteer>

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 15 / 67

XML Elements

Elements (also called tags) are the building blocks of XML documents.

The start of the content of an element elm is marked with the start tag
<elm>, and the end of the content is marked with the end tag </elm>.

Elements must be properly nested. Thus,

<Country><Region> ... </Region></Country>

is legal, whereas

<Country><Region> ... </Country></Region>

is illegal.

Elements are case sensitive, so REGION would be different from Region.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 16 / 67

The content of the Capital element

<Capital>Ljubljana</Capital>

is the text string "Ljubljana".

The content of the Region element consists of one Name element together
with three Feature elements in sequence.

The root element Gazetteer encloses all information in the document.

Although there are no such examples in the example document, the content
of an element may be empty, e.g.,

<elm></elm>

Such empty elements can be abbreviated using a single hybrid tag:

<elm/>

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 17 / 67

Attributes

An element can have descriptive attributes that provide additional
information about the element. For example,

<Feature type="Mountain"> ... </Feature>

sets the attribute type of the given Feature element to have value
Mountain.

Note that attribute values are enclosed in quotation marks (either double or
single quotes).

It is possible for one element to have several different attributes, with values
defined in sequence within the start tag, e.g.

<elm attr1="value1" attr2="value2"> ... </elm>

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 18 / 67

Relating XML and the tree model

The existence of a root element together with the proper nesting of elements
ensures that every XML document carries a tree structure in a natural way:

• Each element of the XML document corresponds to an individual
element node of the tree.

• The root element of the XML document corresponds to the root
element (but not the root node) of the tree.

• The text content of an individual XML element corresponds to a child
text node of the corresponding element node in the tree.

• An attribute definition in an element’s start tag corresponds to a child
attribute node of the corresponding element node in the tree.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 19 / 67

Comments and processing instructions

Comments can be inserted anywhere in an XML document. Comments start
with <!-- and end with -->. They can contain arbitrary text apart from
the string --.

The full XPath data model also contains comment nodes which correspond
to XML comments. We have do not consider such nodes in our tree model
for two reasons:

1. Simplicity.

2. We have included all the types of node that should be used to store data.
Comments should instead be used as aids to the interpretation of the
data represented.

XML and the XPath data model also allow processing instructions to be
included. These are beyond the scope of this course.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 20 / 67

Unicode

An XML document is a text document written in Unicode.

Unicode is a universal code for “text characters”, currently supporting
around 100,000 different characters.

The Unicode characters contain the standard ASCII character set, but also
all “characters” in human use worldwide. (The majority of the 100,000
assigned characters are Chinese!)

Each character has an assigned code point, which is a number between 0
and 1,114,112.

The actual digital representation of Unicode text depends on a choice of
encodings of Unicode character sequences as byte streams. Common
choices of encoding are: UTF-8, UTF-16, UTF-32, ISO-8859-1.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 21 / 67

Well-formed documents

An XML document is well-formed if it conforms to three guidelines:

• It starts with an XML declaration. (Our example gazetteer document
does not!) A suitable such declaration would be:

<?xml version="1.0" encoding="UTF-8"?>

This declares the XML version, and states that UTF-8 character
encoding is to be used for Unicode. (Such declarations are not
examinable. In Data & Analysis, we are interested in the content of a
document not in its declaration.)

• It has a root element that contains all other elements.

• All elements are properly nested.

These are minimal requirements on a document. Often there will be other
constraints we wish to impose.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2009 II: 22 / 67

Part II — Semistructured Data

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Recommended reading: §§4.1–4.3 of [XWT]

§7.4.2 of [DMS]

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 23 / 67

Structuring XML

In a given XML application area, there is often an intended structure that an
XML document should possess.

For example, in the Gazetteer example, we expect the various elements
to respect the natural hierarchy:

• the Country elements are inside Gazetteer;

• the Name (of the country), Population, Capital and Region
elements are inside Country;

• and the Name (of the region) and Feature elements are inside
Region.

Moreover, the Feature elements assign a suitable value to the attribute
type.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 24 / 67

Schema languages for XML

In relational databases, a schema specifies the format of a relation (table).

A schema language for XML is a language designed for specifying the
format of XML documents.

The use of a schema language has two main advantages over giving an
informal specification (cf. the informal and partial specification of the
Gazeteer format on the previous slide):

• It is precise.

• It can be machine checked if an XML document satisfies (validates) a
given schema specification.

If an XML document X has the format specified by a given schema S then
we say that X is valid with respect to S.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 25 / 67

Document Type Definitions

The Document Type Definition (DTD) mechanism is a basic schema
language for XML.

The language is simple, commonly used, and has been an integrated feature
of XML since its inception.

DTD’s allow one to specify:

• The elements and entities that can appear in a document.

• What the attributes of the elements are.

• The relationship between different elements including the order of
appearance and how they are nested.

We illustrate DTD’s by giving an example DTD for a gazetteer format,
which validates the XML document on slide II:14.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 26 / 67

Example DTD

<!ELEMENT Gazetteer (Country+)>

<!ELEMENT Country (Name,Population,Capital,Region*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Population (#PCDATA)>

<!ELEMENT Capital (#PCDATA)>

<!ELEMENT Region (Name,Feature*)>

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type CDATA #REQUIRED>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 27 / 67

Understanding the example DTD

<!ELEMENT Gazetteer (Country+)>

This states that the Gazetteer element consists of one or more
Country elements.

<!ELEMENT Country (Name,Population,Capital,Region*)>

This states that a Country element consists of: one Name element,
followed by one Population element, followed by one Capital
element, followed by zero or more Region elements.

<!ELEMENT Name (#PCDATA)>

This states that the Name element contains text. The keyword #PCDATA
abbreviates “parsed character data”.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 28 / 67

<!ELEMENT Region (Name,Feature*)>

This states that a Region element consists of: one Name, followed by zero
or more Feature elements.

<!ELEMENT Feature (#PCDATA)>

This states that the Feature element has text content.

<!ATTLIST Feature type CDATA #REQUIRED>

This states that the Feature element has an attribute type, and that the
value of the attribute should be a text string (CDATA abbreviates “character
data”). Moreover, it is required that every Feature element in the
document must assign a value to the type attribute.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 29 / 67

General format of element declarations

An element declaration has the structure:

<!ELEMENT elementName (contentType)>

There are four possible content types:

1. EMPTY indicating that the element has no content, i.e. it is an empty
element as defined on slide II:16.

2. ANY indicating that any content is permitted.

Nevertheless elements that appear within the element content must
themselves be declared by corresponding element declarations.

3. #PCDATA indicating text content.

(In fact this is an instance of a more general mixed content format,
which we shall not consider further.)

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 30 / 67

4. A regular expression of element names.

Regular expressions were introduced in Inf1 Computation and Logic.

DTD’s make use of the following format for regular expressions.

• Any element name is a regular expression.

(The element names are the alphabet for the regular expressions.)

• exp1, exp2 : first exp1 then exp2 in sequence.

• exp* : zero or more occurrences of exp.

• exp? : zero or one occurrences of exp.

• exp+ : one or more occurrences of exp.

• exp1|exp2 : either exp1 or exp2.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 31 / 67

General format of attribute declarations

The attributes of an element are declared separately to the element
declaration. The general format is:

<!ATTLIST elementName (attName attType default)+>

This declares a list of at least one attribute for the element elementName.

For each entry in the list:

• attName is the attribute name

• attType is a type for the value of the attribute.

• default specifies whether the attribute is required or optional, and
may specify a default value for the attribute.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 32 / 67

We shall consider only the following attribute types:

• String type: CDATA means that the attribute may have any text string as
its value.

• Enumerated type: (s1 | s2 |...| sn) means that the attribute
must take one of the strings s1, s2, ..., sn as its value.

And the following default options.

• Required: #REQUIRED means that the attribute must be explicitly
assigned a value in every start tag for the element.

• Optional: #IMPLIED means it is optional whether a value is assigned
to the attribute or not.

• Default: A fixed string can be specified as the default value for the
attribute to take if no explicit value is given in the element’s start tag.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 33 / 67

A variation on the example

Consider replacing the attribute declaration in the example DTD with the
following declaration.

<!ATTLIST Feature type (Mountain|Lake|River) "Mountain">

With this new (but not with the original) declaration:

<Feature>Ben Nevis</Feature>

would be a valid Feature element. The type attribute would be given
the default (and correct) value Mountain.

The element below is not valid with respect to the new DTD (although it is
valid for the original DTD)

<Feature type="Castle">Eilean Donan</Feature>

because Castle is not one of the specified values for type.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 34 / 67

Document type declaration

A document type declaration can appear in an XML document between the
XML declaration and the root element. It links the XML document to a
DTD schema intended to specify the structure of the document.

The usual format of a document type declaration is:

<!DOCTYPE rootName SYSTEM "URI">

where rootName is the name of the root element, and URI is the Uniform
Resource Indicator of the intended DTD.

An alternative (illustrated on the next slide) is to include the DTD within the
XML document itself, using an internal declaration

<!DOCTYPE rootName [DTD]>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 35 / 67

Example internal document type declaration

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Gazetteer [

<!ELEMENT Gazetteer (Country+)>

<!ELEMENT Country (Name,Population,Capital,Region*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Population (#PCDATA)>

<!ELEMENT Capital (#PCDATA)>

<!ELEMENT Region (Name,Feature*)>

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type CDATA #REQUIRED>

]>

<Gazetteer>...</Gazetteer>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 36 / 67

Limitations of DTD’s

One of the strengths of the DTD mechanism is its essential simplicity.

However, it is inexpressive in several important ways, and this severely
limits its usefulness. For example, three weaknesses are:

• Elements and attributes cannot be assigned useful types.

• It is impossible to place constraints on data values.

• There are restrictions on how character data and elements can be
combined (they can only be combined as mixed content), and there are
also undesirable technical restrictions on the forms of regular
expression allowed when declaring the structure of elements.

These issues and others have been dealt with through the development of
more powerful, but more complex, XML format languages, such as XML
Schema (which lie beyond the scope of Data & Analysis.)

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 37 / 67

Publishing relational data as XML

A common application of XML is as a format for publishing data from
relational databases.

The benefit of XML for this is that its simple text format makes the data
easily readable and transferable across platforms.

The generality and flexibility of the XML format means that there are many
ways to translate relational data into XML.

We illustrate one simple approach using example data from previous
lectures (cf. slide I:99).

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 38 / 67

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE UniversityData [

<!ELEMENT UniversityData (Students,Courses,Takes)>

<!ELEMENT Students (mn,name,age,email)*>

<!ELEMENT Courses (code,name,year)*>

<!ELEMENT Takes (mn,name,mark)*>

<!ELEMENT mn (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT mark (#PCDATA)>

]>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 39 / 67

<UniversityData>
<Students>
<mn>s0456782</mn> <name>John</name>
<age>18</age> <email>john@inf</email>

<mn>s0412375</mn> <name>Mary</name>
<age>18</age> <email>mary@inf</email>

<mn>s0378435</mn> <name>Helen</name>
<age>20</age> <email>helen@phys</email>

<mn>s0189034</mn> <name>Peter</name>
<age>22</age> <email>peter@math</email>

</Students>
<Courses>
<code>inf1</code><name>Informatics 1</name><year>1</year>
<code>math1</code><name>Mathematics 1</name><year>1</year>

</Courses>
<Takes>
<mn>s0412375</mn><code>inf1</code><mark>80</mark>
<mn>s0378435</mn><code>math1</code><mark>70</mark>

</Takes>
</UniversityData>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 40 / 67

Efficiency

Relational database systems are optimised for storage efficiency.

As we have seen, the XML version of relational data is extremely verbose.

Nevertheless, XML can still be stored efficiently using data compression
(which can be optimised for XML).

Furthermore, once published XML data has been downloaded, it can be
converted back to relational data so it can be stored efficiently in a local
database system.

Converting XML to back to relational data has the benefit of enabling the
data to be queried ising relational database technology (i.e., SQL).

An interesting alternative is to apply newer technology for directly querying
XML.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2009 II: 41 / 67

Part II — Semistructured Data

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Recommended reading:

§§3.1–3.4 of [XWT]

pp. 948–949 of [DMS] (superficial coverage only)

On-line XPath tutorial: http://www.w3schools.com/xpath/

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 42 / 67

How do we extract data from an XML document?

Since an XML document is a text document, one option is to use methods
based on text search.

But this ignores the element structure of the document.

A better alternative is to use a dedicated language for forming queries based
on the tree structure of an XML document

This has many uses, for example:

• Performing relational-database-type queries directly on data published
as XML

• Extracting annotated content from marked-up text documents

• All queries that exploit the tree structure of XML

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 43 / 67

XQuery and XPath

XQuery is a powerful declarative query language for extracting information
from XML documents.

However, the XQuery language is too complex for this course. (See [XWT]
for further information.)

XPath is a sublanguage of XQuery, used specifically for navigating XML
documents using path expressions.

XPath can be viewed as a rudimentary query language in its own right.

It is also an important component of many XML application languages
other than XQuery (e.g., XML Schema, XSLT, XLink, XPointer).

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 44 / 67

Location paths

A location path (a.k.a. path expression) retrieves a set of nodes from an
XML document tree.

• The location path describes a set of possible paths from the root of the
tree.

• The set of nodes retrieved is the set of all nodes reached as final
destinations of the described paths.

• This set of nodes is returned as a list of nodes (without duplicates)
sorted in document order (the order in which the nodes appear in the
XML document)

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 45 / 67

Document order Siblings of A

Ancestors of A Descendants of A

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 46 / 67

Example location paths

The next few slides illustrate a selection of location paths. Each is given
twice: above using the full XPath syntax, and below using a convenient
abbreviated syntax.

In each case, the retrieved nodes are highlighted in red. These nodes will be
returned as a list in document order.

Paths are built up step-by-step as the location path is read from left-to-right.

Each path is constructed by a context node that travels over the tree,
according to certain rules, depending on the continuation of the location
path expression.

The slash / at the start of a location path indicates that the starting position
for the context node is the root node.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 47 / 67

/child::Gazetteer

/Gazetteer

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 48 / 67

/child::Gazetteer/child::Country

/Gazetteer/Country

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 49 / 67

/child::Gazetteer/child::Country/child::Region

/Gazetteer/Country/Region

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 50 / 67

/descendant::Region

//Region

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 51 / 67

/descendant::Region/child::*
//Region/*

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 52 / 67

/descendant::Region/descendant::*
//Region//*

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 53 / 67

/descendant::Region/descendant::node()

//Region//node()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 54 / 67

/descendant::Region/descendant::text()

//Region//text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 55 / 67

/descendant::Feature/attribute::type

//Feature/@type

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 56 / 67

General unabbreviated syntax of location paths

A location path is a sequence of location steps separated by a / character.

A location step has the form

axis::nodeTest predicate*

• The axis tells the context node which way to move.

• The node test selects nodes of an appropriate type from the tree.

• The optional predicates supply conditions that need to be satisfied for
the path to be allowed to count towards the result.

N.B., the previous examples contained only axes and node tests.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 57 / 67

A selection of axes

• child : the children of the context node (remember, an attribute node
does not count as a child node)

• descendant : the descendants of the context node (again, an attribute
node does not count as a descendant).

• parent : the unique parent of the context node (where the context
node must not be the root node).

• attribute : all attribute nodes of the context node (which must be
an element node).

• self : the context node itself (this is useful in connection with
abbreviations).

• descendant-or-self : the context node together with its
descendants.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 58 / 67

A selection of node tests

Node tests filter the nodes selected by the current axis according to the type
of node.

• text() : selects only character data nodes.

• node() : selects all nodes.

• * : if the axis is attribute then all attribute nodes are selected; for
any other axis, all element nodes are selected.

• name : selects the nodes with the given name.

The names used for node tests in the earlier examples were:
Gazetteer, Country, Region, Feature and type.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 59 / 67

Predicates

The node test in a location step may be followed by zero, one or several
predicates each given by an expression enclosed in square brackets.

Common examples of predicates are:

• [locationPath]

This selects only those nodes for which there exists a continuation path
(from the current node) matching locationPath.

• [locationPath =value]

Selects those nodes for which there exists a continuation path matching
locationPath such that the final node of the path is equal to
value.

The full syntax of XPath predicate expressions is rather powerful, but
beyond the scope of the course.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 60 / 67

/descendant::Feature[attribute::type=’Mountain’]

//Feature[@type=’Mountain’]

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 61 / 67

/descendant::Feature[attribute::type=’Mountain’]/child::text()

//Feature[@type=’Mountain’]/text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 62 / 67

//Feature[@type=’Mountain’]/../Name/text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 63 / 67

XPath as a query language

The previous examples illustrate XPath as a rudimentary query language.

The queries formulated are:

• Slide II: 60 : Find every feature element for which the feature is a
mountain.

• Slide II: 61 : Find the name of every mountain.

• Slide II: 62 : Find the name of every region in which there is a
mountain.

The last query was given only in abbreviated form. The full version is more
cumbersome:

/descendant::Feature[attribute::type=’Mountain’]/

parent::*/child::Name/child::text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 64 / 67

Abbreviated syntax

The abbreviated syntax is more economical and often (but not always!)
more intuitive.

The XPath abbreviations are:

• The syntax child:: may be omitted from a location step altogether.
(The child axis is chosen as default.)

• The syntax @ is an abbreviation for: attribute::

• The syntax // is an abbreviation for:

/descendant-or-self::node()/

• The syntax .. is an abbreviation for: parent::node()

• The syntax . is an abbreviation for: self::node()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 65 / 67

Queries and alternatives

Consider again the last query above:

Find the name of every region in which there is a mountain.

An alternative location path for this is:

//Region[Feature/@type=’Mountain’]/Name/text()

Similarly, consider:

Find the name of countries containing a feature called Everest.

Two queries for this are:

//Feature[text()=’Everest’]/../../Name/text()

//Country[.//Feature/text()=’Everest’]/Name/text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 66 / 67

One subtle point

A subtle point with XPath is illustrated by the second solution above to:

Find the name of countries containing a feature called Everest.

While the given query (repeated below) is correct,

//Country[.//Feature/text()=’Everest’]/Name/text()

the following (natural) attempt would be incorrect:

//Country[//Feature/text()=’Everest’]/Name/text()

The problem is that the location path //Feature/text() starts with a /
character, and this means that XPath interprets this path as starting at the
root node, whereas the path needs to start at the current node.

The omission of a necessary ‘.’ character at the start of a predicate
expression is a common source of errors in XPath.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2009 II: 67 / 67

More on XPath

In practice, when using XPath, one often needs to prefix the location path
with a pointer to the given XML document; e.g.,

doc("gazetter.xml")//Feature[@type=’Mountain’]/text()

Other features in XPath include: navigation based on document order,
position and size of context, treatment of namespaces, a rich language of
expressions.

For full details on XPath and XQuery see the W3C specification:

http://www.w3.org/TR/xpath

A tutorial can be found at:

http://www.w3schools.com/xpath/

Part II: Semistructured Data II.3: Navigating XML using XPath

