
Inf1B, Data & Analysis, 2008 7.1 / 32

Informatics 1B, 2008
School of Informatics, University of Edinburgh

Data and Analysis

Note 7
Querying XML Documents with XQuery

Alex Simpson

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.2 / 32

Part II — Semistructured Data

XML

Note 6 Semistructured data and XML

Note 7 Querying XML documents with XQuery

Corpora

Note 8 Introduction to corpora

Note 9 Building a corpus

Note 10 Querying a corpus

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.3 / 32

How do we extract data from an XML document?

Since an XML document is a text document, one option is to use methods
based on text search.

But this ignores the element structure of the document.

XQuery is a dedicated language for forming queries based on the tree
structure of an XML document

Useful for:

• Performing relational-database-type queries on data published as XML

• Extracting annotated content from marked-up text documents

• All queries that exploit the tree structure of XML

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.4 / 32

Some features of XQuery

XQuery is a declarative language. (As with SQL’s “conceptual evaluation”,
XQuery queries can be given understod via a procedural reading, but this
need not coincide with the actual evaluation strategy used in practice.)

As well as using XML documents for its source data, XQuery is capable of
producing XML documents as its output. That is, the result of a query can
be produced in XML format. Thus, one way of viewing XQuery is as a
language for transforming XML documents into XML documents.

(This is analogous to SQL, which takes tables as input to a query and
produces a table as output.)

XQuery is compatible with important XML facilities that are beyond the
scope of this course, e.g.: namespaces; and XML Schema and its datatypes.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.5 / 32

FLWOR expressions

The FLWOR expression (pronounced “flower”) is the basic query form in
Xquery.

• For — iterates over data

• Let — binds a variable to a list of data

• Where — filters out data that does not satisfy a specified property

• Order — specifies how the data is to be ordered

• Return — specifies and formats the information to be returned

The next slide displays an illustrative query.

(You should understand this by the end of the lecture, not immediately!)

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.6 / 32

Example query

<WorldLakes> {

for $x in doc("gaz.xml")/Gazetteer/Country

let $y := $x//Feature[@type=’Lake’]

where $y

order by $x/Name/text()

return

<Country>

{$x/Name}

{for $z in $y/text() return <Lake>{$z}</Lake>}

</Country>

}

</WorldLakes>

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.7 / 32

Example query (very!) informally

One can read this query as follows:

For every country $x in the gazetteer,

bind $y to the list of all lakes in country $x,

then, for those countries for which there is at least one lake in $y,

ordering countries alphabetically by country name,

return (in a specified format) the country name together with the
list of all lakes in the country.

The next two slides give a fragment of a source document, followed by a
fragment of the corresponding output document.

Note that the output document contains data about Italy, which is not
displayed in the source document (due to lack of space on the slide).

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.8 / 32

<Gazetteer>

<Country>

<Name>Slovenia</Name>

<Population>2,020,000</Population>

<Capital>Ljubljana</Capital>

<Region>

<Name>Gorenjska</Name>

<Feature type="Lake">Bohinj</Feature>

<Feature type="Mountain">Triglav</Feature>

<Feature type="Lake">Bled</Feature>

</Region>

</Country>

<!-- data for other countries including Italy here -->

</Gazetteer>

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.9 / 32

<WorldLakes>

<Country>

<Name>Italy</Name>

<Lake>Como</Lake>

<Lake>Maggiore</Lake>

<Lake>Garda</Lake>

<Lake>Levico</Lake>

</Country>

<Country>

<Name>Slovenia</Name>

<Lake>Bohinj</Lake>

<Lake>Bled</Lake>

</Country>

</WorldLakes>

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.10 / 32

Path expressions

Path expressions are a crucial component of XQuery.

A path expression denotes a set of nodes in the document tree.

This set of nodes is returned as a list of nodes (without duplicates) sorted in
document order (the order in which the nodes appear in the XML document)

In the example query on slide 7.6, the path expression

doc("gaz.xml")/Gazetteer/Country

Denotes the set of Country elements that are nested immediately inside
the root element Gazeteer of the XML document gaz.xml.
(In fact all the Country elements in the document are of this form.)

These nodes are numbered, in document order, on the next slide.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.11 / 32

gaz.xml

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.12 / 32

Path expressions (continued)

A path expression can be understood as describing a set of possible paths
from the root of the tree.

The set of nodes it defines is the set of all nodes reached as final
destinations of the described paths.

Paths are built up step-by-step as the path expression is read from
left-to-right.

Each path is constructed by a context node that travels over the tree, starting
from the root. This moves, according to certain rules, depending on the
continuation of the path expression.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.13 / 32

Path expressions (building blocks)

We will only consider path expressions built up using the three building
blocks below.

• /nodeTest

Move the context down the tree to a child node passing nodeTest

• //nodeTest

Move the context down to a descendent node passing nodeTest

• /..

Move the context up the tree to its (unique) parent node

The highlighted tree concepts are illustrated on the next three slides

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.14 / 32

Children nodes, in document order, of the context node “ctxt”

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.15 / 32

Descendent nodes, in document order, of the context node “ctxt”

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.16 / 32

The parent node of the context node “ctxt”

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.17 / 32

Path expressions (node tests)

• ElementName

Selects only those nodes that are ElementName elements

• *

Selects all element nodes
(Warning. Sometimes * can have other meanings too, but we will not
consider any situation in which this occurs.)

• text()

Selects only those nodes that are character data

The node test can be followed by a predicate in square brackets which
further constrains the nodes being selected.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.18 / 32

Path expressions (predicates)

We consider just some of the more common examples of predicates.

• [@attributeName]
Selects only those elements that have an attribute attributeName

• [@attributeName=value]
Selects only those elements that have an attribute attributeName
with value value. (Other possible tests include != for “not equal to”.)

• [pathExpression]
Selects only those nodes for which there exists a continuation path
(from the current node) matching pathExpression.

• [pathExpression=value]
Selects those nodes for which there exists a continuation path (from the
current node) matching pathExpression such that the final node of
the path is equal to value.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.19 / 32

Example 1: doc("gaz.xml")//text()

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.20 / 32

Example 2: All elements that are lakes
doc("gaz.xml")//*[@type=’Lake’]

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.21 / 32

Example 3: All Name elements for regions containing lakes
doc("gaz.xml")//Feature[@type=’Lake’]/../Name

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.22 / 32

Example 4: All Region elements for Slovenia
doc("gaz.xml")//Country[Name/text()=’Slovenia’]/Region

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.23 / 32

XPath

XQuery is built on XPath 2.0, a rich and expressive language for path
expressions.

The path expressions we have considered are all examples of XPath
expressions.

However, we have considered only the simplest XPath features, and only
their (easy to use) abbreviated form.

Other features in XPath include: navigation based on document order,
position and size of context, treatment of namespaces, a rich language of
expressions, non-abbreviated syntax.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.24 / 32

Evaluating a FLWOR expression

For expressions

The for expression

for $x in path-expression

sets the variable $x to each node in the list returned by the path expression
in turn.

Accordingly, in the example,

for $x in doc("gaz.xml")/Gazetteer/Country

the variable $x is first set to node 1 in the tree on 7.11, and then to node 2.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.25 / 32

Let expressions

The let expression

let $y := path-expression

sets the variable $y to the entire list of nodes returned by the path
expression.

Accordingly, if the variable $x takes the value of the Country node for
Slovenia, then the let expression

let $y := $x//Feature[@type=’Lake’]

sets $y to the list consisting of the two Feature elements for lakes in
Slovenia.

This is illustrated on the next slide.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.26 / 32

$x//Feature[@type=’Lake’]

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.27 / 32

Return expressions

The return expression specifies the data to be returned by the query.

We illustrate by example.

for $x in doc("gaz.xml")/Gazetteer/Country/Name

return $x

produces a list of as many name elements as countries (assuming each
country has a single name in the document), e.g.

<Name>Slovenia</Name>, <Name>Italy</Name>

Note that this is not in itself an XML document.

To construct an XML document, we use the document constructor {...},
which allows XQuery to be included within an XML wrapper document,
and also replaces separating commas with separating spaces.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.28 / 32

Return expressions (continued)

We amend the previous example as follows:

<Countries>{
for $x in doc("gaz.xml")/Gazetteer/Country/Name

return $x

}</Countries>

This produces

<Countries>

<Name>Slovenia</Name> <Name>Italy</Name>

</Countries>

The XQuery command inside the document constructor is called an
enclosed expression

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.29 / 32

Return expressions (continued)

It is often useful to nest return expressions (indeed general FLWOR
expressions), as in a simplified version of the query on 7.6.

<WorldLakes> {

for $x in doc("gaz.xml")/Gazetteer/Country

let $y := $x//Feature[@type=’Lake’]

return

<Country>

{$x/Name}

{for $z in $y/text() return <Lake>$z</Lake>}

</Country>

} </WorldLakes>

The result of this query is shown on the next slide

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.30 / 32

<WorldLakes>

<Country>

<Name>Slovenia</Name>

<Lake>Bohinj</Lake>

<Lake>Bled</Lake>

</Country>

<Country>

<Name>Italy</Name>

<Lake>Como</Lake>

<Lake>Maggiore</Lake>

<Lake>Garda</Lake>

<Lake>Levico</Lake>

</Country>

</WorldLakes>

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.31 / 32

Order and where expressions
The original query on 7.6 contains additional where and order clauses.

for $x in ...

let $y := ...

where $y

order by $x/Name/text()

return ...

The where clause applies $y as a test. Since, $y is a sequence of nodes,
the test returns false if $y is the empty sequence, and true otherwise.
Only when the test returns true (i.e. when $y is non-empty) does
execution proceed on to the order clause. If the test returns false then
execution instead returns to the for clause for $x to take its next value.

The order clause reorders the output by order on the text content of
$x/Name/text(). Since this is text data, the ordering is lexicographic.

Note 7 Querying XML documents with XQuery

Inf1B, Data & Analysis, 2008 7.32 / 32

and more . . .

For full details on XPath and XQuery see the W3C specifications:

http://www.w3.org/TR/xpath

http://www.w3.org/TR/xquery/

The full languages are vast (and XQuery is something of a minefield!)

Tutorials can be found at:

http://www.w3schools.com/xpath/

http://www.w3schools.com/xquery/

XPath is a particularly useful language to learn, since it is also used in XML
Schema and in XSLT (a dedicated language for transforming XML
documents)

Note 7 Querying XML documents with XQuery

