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Statistical hypothesis testing

Data visualisation gives one tool for postulating hypotheses about data.

One might also postulate hypotheses for other reasons, e.g.: intuition that a
hypothesis may be true; a perceived analogy with another situation in which
a similar hypothesis is known to be valid; existence of a theoretical model
that makes a prediction; etc.

Such hypotheses are corroborated or refuted by means of statistical tests.

Example: As in the last lecture, scatter plots give us ways of visualising the
existence or absence of (positive or negative) correlation between different
variables. In this case, such hypotheses can be corroborated or refuted using
Pearson’s correlation coefficient.
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The general form of a statistical test

Statistical tests are usually based on a null hypothesis that there is nothing
out of the ordinary about the data.

The result R of the test has an associated probability value p.

The value p represents the probability that we would obtain result R if the
null hypothesis were true.

If the value of p is significantly small then we conclude that the null
hypothesis is a poor explanation for our data, So we reject the null
hypothesis, and replace it with a better explanation for our data.

Standard significance thresholds are to require p < 0.05 (i.e., there is a
less than 1/20 chance that we would have obtained our test result were the
null hypothesis true) or, better, p < 0.01 (i.e., there is a less than 1/100
chance)
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Case study 1: correlation

In a test for correlation between two variables x, y (e.g., exam result and
study hours), we are looking for a correlation and a direction for the
correlation (either negative or positive) between the variables.

The null hypothesis is that there is no correlation.

We calculate the Pearson correlation coefficient rx,y .

We then look the result up in statistical tables to see what the associated
probability value p is.

This tells us whether we have significant grounds for rejecting the null
hypothesis, in which case our better explanation is that there is a correlation.
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Studying vs. exam results

We use the data from 12.18 (see also 12.20), with the study values for
x1, . . . , xN , and the exam values for y1, . . . , yN , where, in this case,
N = 8.

The relevant statistics are:

µx = 1.9 σx = 0.981

µy = 56.25 σy = 24.979

rx,y = 0.985

We now look up significance in a statistical table for Pearson’s correlation
coefficient. Such tables can be found in statistics books. (They can also be
found on the Web.)

Note 13 Statistical analysis of data II



Inf1B, Data & Analysis, 2008 13.7 / 29

Critical values table for Pearson’s correlation coefficient

The table has rows for N values and columns for p values.

N p = 0.1 p = 0.05 p = 0.01 p = 0.001

7 0.669 0.754 0.875 0.951

8 0.621 0.707 0.834 0.925

9 0.582 0.666 0.798 0.898

The table shows that for N = 8 a value of rx,y > 0.925 has probability
p < 0.001 of occurring (that is less than a 1/1000 chance of occurring) if
the null hypothesis is true.

Our value of 0.985 is indeed (much) higher than the critical value 0.925.
Thus we reject the null hypothesis with very high confidence (p < 0.001)
and conclude that there is a (positive) correlation (since rx,y is close to 1
not to −1).
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Drinking vs. exam results

We now use the drinking values from 12.18 (see also 12.21), as the values
for x1, . . . , x8. (The y values are unchanged.)

The new statistics are:

µx = 12.75 σx = 8.288 rx,y = −0.914

From the table, we see that if the null hypothesis were true then the
probability p of a value rx,y with 0.834 < |rx,y| occurring is p = 0.01.

Since | − 0.914| = 0.914 > 8.288, we can therefore reject the null
hypothesis with high confidence (p < 0.01). Though the result is less
significant than the previous.

This time, the value −0.914 of rx,y is close to −1 so we conclude that the
correlation is negative.
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Pearsons correlation coefficient — subtleties

Critical value tables for Pearson’s correlation coefficient are often given
with rows indexed by degrees of freedom rather than by N . For Pearson’s
test, the number of degrees of freedom is N − 2, so it is easy to translate
such a table into the form given here. (The notion of degree of freedom, in
the case of Pearson’s test, is too subtle a concept to explain here.)

Also, critical value tables often have two classifications: one for one-tailed
tests and one for two-tailed tests. Here, we are applying a two-tailed test:
we consider values close to 1 and values close to −1 as significant. In a
one-tailed test, we would be interested in just one of these possibilities.
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Case study 2: finding collocations

Recall from note 10 that a collocation is a sequence of words that occurs
atypically often in language usage. Examples were: strong tea; run amok;
make up; bitter sweet, etc.

Using statistical tools we can build a corpus-based test to detect whether a
given n-gram is a collocation. For simplicity, we focus on bigrams. (N.B.
All the examples above are bigrams.)

The statistical tool we use is called the χ2 (chi-squared) test.

The χ2 test is a general tool for investigating correlations between
categorical data. (Whereas, the Pearson coefficient we have considered so
far applies only to numerical data, both interval and ratio.)

However, we consider χ2 only in the context of collocation filtering.
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Finding collocations (continued)

Given a bigram w1 w2, we use a corpus to investigate whether the words
w1 w2 appear together atypically often.

The null hypothesis is that there is no relationship between occurrences of
the the words w1 and w2.

The χ2 test will allow us to compute the probability p that the data we see
could occur were the null hypothesis true.

Once again, if p is signifcantly low, we reject the null hypothesis, and we
conclude that there is an atypical relationship between the words.

To begin, we use the corpus to compile a contingency table of frequency
observations Oij .
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Contingency table

Oij w1 ¬w1

w2 O11 = f(w1 w2) O12 = f(¬w1 w2)

¬w2 O21 = f(w1 ¬w2) O22 = f(¬w1 ¬w2)

f(w1 w2) is frequency of w1 w2 in the corpus.

f(¬w1 w2) is number of bigram occurrences in corpus in which the
second word is w2 but the first word is not w1. (N.B. If the same bigram
appears n times in the corpus then this counts as n different occurrences.)

f(w1 ¬w2) is number of bigram occurrences in corpus in which the first
word is w1 but the second word is not w2.

f(¬w1 ¬w2) is number of bigram occurrences in corpus in which the first
word is not w1 and the second is not w2.
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Worked example

Recall from note 10 that the bigram strong desire occurred 10 times in the
CQP Dickens corpus.

We shall investigate this as a collocation.

The full contingency table is:

Oij strong ¬strong

desire 10 214

¬desire 655 3407085

Note 13 Statistical analysis of data II



Inf1B, Data & Analysis, 2008 13.14 / 29

Idea of χ2 test

The observations Oij are the actual frequencies of data in the corpus.

We use these to calculate expected frequencies Eij , i.e., the frequencies we
would have expected to see were the null hypothesis true.

The χ2 test is calculated by comparing the actual frequency to the expected
frequency.

The larger the disrepancy between these two values, the more improbable it
is that the data could have arisen were the null hypothesis true.

Thus a large discrepancy allows us to reject the null hypothesis and
conclude that the data is likely to be due to a correlation.
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Marginals

To compute the expected frequencies, we first compute the marginals
R1, R2, B1, B2 of the observation table.

Oij w1 ¬w1

w2 O11 O12 R1 = O11 + O12

¬w2 O21 O22 R2 = O21 + O22

B1 = O11 + O21 B2 = O12 + O22 N

Here
N = R1 + R2 = B1 + B2
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Marginals explained

The marginals and N are very simple.

• B1 is the number of bigram occurrences whose first word is w1.

• B2 is the number of bigram occurrences whose first word is not w1.

• R1 is the number of bigram occurrences whose second word is w2.

• R2 is the number of bigram occurrences whose second word is not w2.

• N is the total number of bigram occurrences in the corpus.

Given these figures, if there were no relationship between w1 and w2, we
would expect the number of occurrences of the bigram w1 w2 to be

B1R1

N
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Expected frequencies

The expected frequencies Eij are now calculated as follows.

Eij w1 ¬w1

w2 E11 = B1R1/N E12 = B2R1/N R1 = E11 + E12

¬w2 E21 = B1R2/N E22 = B2R2/N R2 = E21 + E22

B1 = E11 + E21 B2 = E12 + E22 N

Notice that this table has the same marginals as the original.
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The χ2 value

We can now define the χ2 value by:

χ2 =
∑
i,j

(Oij − Eij)2

Eij

=
(O11−E11)2

E11

+
(O12−E12)2

E12

+
(O21−E21)2

E21

+
(O22−E22)2

E22

N.B. It is always the case that:

(O11−E11)2 = (O12−E12)2 = (O21−E21)2 = (O22−E22)2

This fact is helpful in simplifying χ2 calculations.

Mathematical Exercise. Why are these 4 values always equal?
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Worked example (continued)

Marginals:

Oij strong ¬strong

desire 10 214 224

¬desire 655 3407085 3407740

665 3407299 3407964

Expected values:

Eij strong ¬strong

desire 0.044 223.956 224

¬desire 664.956 3407075.044 3407740

665 3407299 3407964
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Worked example (continued)

χ2 =
9.9562

0.044
+

9.9562

223.956
+

9.9562

664.956
+

9.9562

3407075.044

=
99.122

0.044
+

99.122

223.956
+

99.122

664.956
+

99.122

3407075.044

= 2252.773 + 0.443 + 0.149 + 0.000

= 2253.365
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Critical values for χ2 test

For a χ2 test based on a 2 × 2 contingency table, the critical values are:

p 0.1 0.05 0.01 0.001

χ2 2.706 3.841 6.635 10.828

We interpret the table thus. If the null hypothesis were true then:

• The probability of the χ2 value exceeding 2.706 would be p = 0.1.

• The probability of the χ2 value exceeding 3.841 would be p = 0.05.

• The probability of the χ2 value exceeding 6.635 would be p = 0.01.

• The probability of the χ2 value exceeding 10.828 would be
p = 0.001.
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Worked example (concluded)

In our worked example, we have χ2 = 2253.365 > 10.828,

In this case, we can reject the null hypothesis with very high confidence
(p < 0.001).

In fact since χ2 = 2253.365 >> 10.828 we have confidence
p << 0.001

We conclude that, at least according to the Dickens corpus, the bigram
strong desire is (rightly!) identified as a (highly probable) collocation.
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χ2 — subtle points

In critical value tables for the χ2 test, the entries are usually classified by
degrees of freedom. For an m × n contingency table, there are
(m − 1) × (n − 1) degrees of freedom. (This can be understood as
follows. Given fixed marginals, once (m − 1) × (n − 1) entries in the
table are completed, the remaining m + n − 1 entries are completely
determined.)

The values in the table on slide 13.21 are those for 1 degree of freedom, and
are thus the correct values for a 2 × 2 table.

The χ2 test for a 2 × 2 is unreliable when N is small (e.g. less than 40)
and at least one of the four expected values is less than 5. In such situations,
a modification Yates correction, is sometimes applied. (The details are
beyond the scope of Data & Analysis.)
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Populations and samples

Our discussion of statistics so far has been all about computing various
statistics for a given set of data.

Often, however, we are interested in knowing the value of the statistic for a
whole population from which our data is just a sample.

Examples:

• Experiments in social sciences where one wants to discover some
general property of a section of the population (e.g., teenagers).

• Surveys (e.g., marketing surveys, opinion polls, etc.).

• In software design, understanding requirments of users.

• Many, many other examples.

In such cases it is totally impracticable to obtain exhaustive data about the
population as a whole. Sp we are forced to obtain data about a sample.
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Sampling

There are important guidelines to follow in choosing a sample from a
population.

• The sample should be chosen randomly from the population.

• The sample should be as large as is practically possible (given
constraints on gathering data, storing data and calculating with data).

These two guidelines are designed to improve the likelihood that the sample
is representative of the population. In particular, they minimise the chance
of accidentally building a bias into the sample.

Given a sample, one calculates statistical properties of the sample, and uses
these to infer likely statistical properties of the whole population.

Important topics in statistics (beyond the scope of D&A) are maximising
and quantifying the reliability of such techniques.
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Estimating statistics for a population given a sample

Tyically one has a (hopefully representative) sample x1, . . . , xn from a
population of size N where n << N (i.e., n is much smaller that N ).

We use the sample x1, . . . , xn to estimate statistical values for the whole
population.

Sometimes the calculation is the expected one, sometimes it isn’t.

To estimate the mean of the population, calculate

µ =

∑n
i=1 xi

n

As expected, this is just the mean of the sample.
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Estimating variance and standard deviation of population

To estimate the variance of the population, calculate∑n
i=1(xi − µ)2

n − 1

To estimate the standard deviation of the population, calculate√∑n
i=1(xi − µ)2

n − 1

N.B. These values are not simply the variance and standard deviation of the
sample. In both cases, the expected denominator of n has been replaced by
n − 1. This gives a better estimate in general when n << N .

Note 13 Statistical analysis of data II



Inf1B, Data & Analysis, 2008 13.28 / 29

Caution

The use of samples to estimate statistics of populations is so common that
the formula on the previous slide is very often the one needed when
calculating standard deviations.

Its usage is so widespread that sometimes it is wrongly given as the
definition of standard deviation.

The existence of two different formulas for calculating the standard
deviation in different circumstances can lead to confusion. So one needs to
take care.

Sometimes calculators make both formulas available via two buttons: σn

for the formula with denominator n; and σn−1 for the formula with
denominator n − 1.
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Further reading

There are many, many, many books on statistics. Two very gentle books,
intended mainly for social science students, are:

P. Hinton
Statistics Explained
Routledge, London, 1995

First Steps in Statistics
D. B. Wright
SAGE publications, 2002

These are good for the formula-shy reader.

Two entertaining books (the first a classic, the second very recent), full of
examples of how statistics are often misused in practice, are:

D. Huff
How to Lie with Statistics
Victor Gollancz, 1954

M. Blastland and A. Dilnot
The Tiger That Isn’t
Profile Books, 2007/8
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