

Aristotle to Venn

Aristotelian Syllogisms

Aristotle 384-322 BC

another example

$$\frac{a \models b \quad b \models \neg c}{a \models \neg c}$$

All snakes are reptiles. No reptile has fur.

· No snake has fur.

$$\frac{a \vDash b \quad b \vDash c}{a \vDash c}$$

INF1A

substitution

since this works for *any* predicates, a,b,c, it works for a, b, ¬c the following rule must also be sound

Euler diagram?

Aristotle 384-322 BC

Euler diagram?

INF1A

syllogism

384-322 BC

every a is b every b is not c every a is not c

no b is c

every a is b every b is not c

$$a \models b$$

 $a \models b \quad b \models \neg c$

 $a \models \neg c$

every a is not c

no a is c

INF1A

syllogism

Aristotle 384-322 BC

INF1A

syllogism

 $a \models \neg c$

celarent

Aristotle 384-322 BC

All snakes are reptiles No reptiles have fur

· No snakes have fur

$$\frac{a \vDash b \quad b \vDash c}{a \vDash c}$$

$$\frac{a \vDash b \quad b \vDash c}{a \vDash c} \quad \frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c}$$

INF1A

Venn interpretation

all a is b

$$a \models b$$

Euler diagrams?

Venn diagrams

These regions are empty

no a is b

$$a \models \neg t$$

Aristotle 384-322 BC

no b is c

soundness

$$\underline{a \models b \quad b \models \neg c}_{\text{\tiny celarent}} \quad \underline{a} \models \neg c$$

All snakes are reptiles No reptiles have fur

∴ No snakes have fur

INF₁A

Aristotle to Venn

Syllogisms for free!

Aristotle

$$\frac{a \models b \quad b \models \neg c}{a \models \neg c}$$

All snakes are reptiles. No reptile has fur.

· No snake has fur.

$$a \vDash b \quad b \vDash c$$
barbara $a \vDash c$

cesare

INF1A

syllogism

$$a \models b$$
 $c \models \neg b$
 $c_{\text{amestres}} c \models \neg a$
 $a \models b$ $b \models \neg c_{\text{calemes}}$
 $c \models \neg a$

Aristotle 384-322 BC

$$\frac{a \vDash b \quad b \vDash c}{a \vDash c}$$

$$\frac{a \vDash b \quad b \vDash c}{a \vDash a} \quad \frac{a \vDash b \quad b \vDash \neg c}{a \vDash a} \quad \frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c}$$

 $a \models b \quad c \models \neg b$

cesare

INF1A

syllogism

More sound rules

Aristotle 384-322 BC

all greeks are men all men are mortal : all greeks are mortal

$$\frac{a \models b \quad b \models c}{\text{\tiny barbara} \ a \models c}$$

$$\frac{a \vDash b \quad b \vDash c}{\text{\tiny barbara} \ a \vDash c}$$

$$\frac{a \vDash b \quad c \vDash \neg b}{c^{\text{camestres}} \ c \vDash \neg a}$$

all humans are mammals no reptiles are mammals ∴ no reptiles are humans

$$\frac{a \vDash b \quad b \vDash \neg c}{a \vDash \neg c}$$

all humans are mammals no mammals are reptiles ∴ no humans are reptiles

our first five syllogisms

$$\frac{a \vDash b \quad b \vDash \neg c}{c^{\text{calemes}} \ c \vDash \neg a}$$

all humans are mammals no mammals are reptiles ∴ no reptiles are humans

$$\frac{a \models b \quad c \models \neg b}{a \models \neg c}$$

all humans are mammals no reptiles are mammals ∴ no humans are reptiles