

INF1A

Aristotle via Venn

Negation and

contraposition of predicates

Aristotle 384-322 BC

no a is b iff no b is a

contraposition of predicates

no a is b

$$\frac{a \vDash \neg b}{b \vDash \neg a}$$

no b is a

all a is b no a is not b

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

all **not b** is **not a** no **not b** is **a**

all not a is b

$$\frac{\neg a \vDash b}{\neg b \vDash a}$$

all not b is a

The first rule of boolean algebra

INF1A

syllogism

$$\neg a = a$$

The second rule of boolean logic the first is *barbara*

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

$$\frac{\neg \neg a \vDash \neg \neg b}{a \vDash b}$$

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

contraposition

The first rule of boolean algebra

INF1A

syllogism

The second rule of boolean logic (the first rule of logic is *barbara*)

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

$$\frac{\neg \neg a \vDash \neg \neg b}{a \vDash b}$$

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

... to every affirmation there corresponds exactly one denial such that that denial denies exactly what that affirmation affirms.

Aristotle

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

contraposition

predicates a, b ...

every a satisfies b

a relation between predicates

$$a \models b$$

valid rules

INF1A

syllogism

negation

$$(\neg a)x = \operatorname{not}(a \ x) \qquad a \models b \quad b \models c$$

$$a \models c$$

$$\frac{a \models b \quad b \models \neg c}{a \models \neg c}$$

$$\frac{a \vDash b}{\neg b \vDash \neg a}$$

 $\neg \neg a = a$

$$\frac{a \vDash \neg b}{b \vDash \neg a} \quad \frac{\neg a \vDash b}{\neg b \vDash a}$$

contraposition