
Informatics 1 - Computation & Logic:
Tutorial 7

Computation: Non-Deterministic FSMs and
Regular Expressions

Week 9: 13 - 17 November 2017

Please attempt the entire worksheet in advance of the tutorial,
and bring all work with you. Tutorials cannot function properly
unless you study the material in advance. Attendance at tutorials
is obligatory; please let the ITO know if you cannot attend.

You may work with others, indeed you should do so; but you
must develop your own understanding; you can’t phone a friend
during the exam. If you do not master the coursework you are
unlikely to pass the exams.

You may find it useful to refer to the FSM Workbench question
set which accompanies this tutorial at
homepages.inf.ed.ac.uk/s1020995/tutorial6.

Use the workbench to check your working, but ultimately you
should aim to be able to answer simple questions of this type
working with just pencil and paper.

This tutorial exercise sheet was written by Matthew Hepburn and Dagmara
Niklasiewicz, with additions from Michael Fourman. Send comments to
Michael.Fourman@ed.ac.uk

1

http://homepages.inf.ed.ac.uk/s1020995/tutorial6
http://homepages.inf.ed.ac.uk/s1020995/tutorial6

In Lecture 14 we introduced this example of a DFA encoded in Haskell:

NFA are easy to define and easy to combine.
DFA are easy to implement

r

searching for cucumber
u mm bc u c e rebuu cc

. .

s0 [] = True

s0 ('0':xs) = s0 xs

s0 ('1':xs) = s1 xs

s0 ('2':xs) = s2 xs

s1 [] = False

s1 ('0':xs) = s3 xs

s1 ('1':xs) = s0 xs

s1 ('2':xs) = s1 xs

s2 [] = False

s2 ('0':xs) = s2 xs

s2 ('1':xs) = s3 xs

s2 ('2':xs) = s0 xs

s3 [] = False

s3 ('0':xs) = s1 xs

s3 ('1':xs) = s2 xs

s3 ('2':xs) = s3 xs

The code consists of four mutually recursive functions, one for each state of
the machine. To check whether a string, input, is accepted by the machine
we evaluate s0 input (because S0 is the starting state of our DFA), which
returns the Boolean answer, True or False.
Check that you understand how this code relates to the DFA. How would
you modify the code if the accepting state were S3? How could you modify
the code to return the number of the final state of the trace generated by
any input string?

1. Consider the finite state machine in the diagram below.

a,c

a

b

b

b

c

a,b
,c

a,b,c

a,c

S1

S2

S3

S4

S5

Input Is Accepted?
〈 〉 Y
b Y
aa Y
ba N

abaab N
acaca Y
aaab Y
bbbcb Y
cacba N

(a) For each input sequence in the table above, record whether it is
accepted by the FSM.

(b) Is the FSM deterministic? Justify your answer.
NO. As it has two initial states it can be in more than one state
for some input sequences.

(c) Implement a Haskell function to check your answers (by impl-
menting a suitable DFA). The state transition table for the DFA
is given by the subset construction:

2

a b c
s1, s2 s2, s3 s1, s4 s2, s3
s2, s3 s2 s4 s2, s5
s1, s4 s3, s5 s1, s5 s3, s5

s2 s2 s4 s2
s4 s5 s5 s5
s5 s5 s5 s5

s2, s5 s2, s5 s4, s5 s2, s5
s3, s5 s2, s5 s4, s5 s5
s1, s5 s3, s5 s1, s5 s3, s5
s4, s5 s5 s5 s5

Discussion point: note that s5 is a black hole state. This means
that the oroginal machine is equivalent to the NFA given by delet-
ing s5 and all transitions to it. Working from this NFA gives us
a simpler, but equivalent DFA.

a b c
s1, s2 s2, s3 s1, s4 s2, s3
s2, s3 s2 s4 s2
s1, s4 s3 s1 s3

s2 s2 s4 s2
s4 {} {} {}
{} {} {} {}
s3 s2 s4 {}
s1 s3 s1 s3

3

Haskell functions corresponding to these two DFA are given below
s1s2 (x:xs) = case x of

'a' -> s2s3 xs
'b' -> s1s4 xs
'c' -> s2s3 xs

s1s2 [] = True
s2s3 (x:xs) = case x of

'a' -> s2 xs
'b' -> s4 xs
'c' -> s2s5 xs

s2s3 [] = True
s1s4 (x:xs) = case x of

'a' -> s3s5 xs
'b' -> s1s5 xs
'c' -> s3s5 xs

s1s4 [] = True
s2 (x:xs) = case x of

'a' -> s2 xs
'b' -> s4 xs
'c' -> s2 xs

s2 [] = True
s4 (x:xs) = case x of

'a' -> s5 xs
'b' -> s5 xs
'c' -> s5 xs

s4 [] = True
s5 (x:xs) = case x of

'a' -> s5 xs
'b' -> s5 xs
'c' -> s5 xs

s5 [] = False
s2s5 (x:xs) = case x of

'a' -> s2s5 xs
'b' -> s4s5 xs
'c' -> s2s5 xs

s2s5 [] = True
s3s5 (x:xs) = case x of

'a' -> s2s5 xs
'b' -> s4s5 xs
'c' -> s5 xs

s3s5 [] = False
s1s5 (x:xs) = case x of

'a' -> s3s5 xs
'b' -> s1s5 xs
'c' -> s3s5 xs

s1s5 [] = False
s4s5 (x:xs) = case x of

'a' -> s5 xs
'b' -> s5 xs
'c' -> s5 xs

s4s5 [] = True

s1s2 (x:xs) = case x of
'a' -> s2s3 xs
'b' -> s1s4 xs
'c' -> s2s3 xs

s1s2 [] = True
s2s3 (x:xs) = case x of

'a' -> s2 xs
'b' -> s4 xs
'c' -> s2 xs

s2s3 [] = False
s1s4 (x:xs) = case x of

'a' -> s3 xs
'b' -> s1 xs
'c' -> s3 xs

s1s4 [] = True
s2 (x:xs) = case x of

'a' -> s2 xs
'b' -> s4 xs
'c' -> s2 xs

s2 [] = True
s4 (x:xs) = False
s4 [] = True
s3 (x:xs) = case x of

'a' -> s2 xs
'b' -> s4 xs
'c' -> xs

s3 [] = False
s1 (x:xs) = case x of

'a' -> s3 xs
'b' -> s1 xs
'c' -> s3 xs

s1 [] = False

a,
 c

b

a, c

b

a, c

b

a, c

b

a

b

a,
 c

b

{s1, s2}

{s2, s3}

s2

s4

{s1, s4}

s3

s1

Note that in the second case we don’t implement a function corre-
sponding to the black hole state - instead, we immediately return
False whenever we would otherwise call that function.
There is still one opportunity to optimise this machine. Use the
FSM workbench to find a minimal DFA for the machine, and
convince yourself that it recognises the same language. You will
learn more about minimal DFA next year.

4

2. This NFA over the alphabet {a} uses an ε transition.

a ε

a

S1 S2 S3

(a) Describe the language accepted by this machine in words.
All sequences of ‘a’ that are at least one character long

(b) Describe the language accepted by this machine using a regular
expression. aa∗

(c) Design a deterministic machine that accepts the same language as
this machine.

a

a

S1 S2

3. ε-transitions provide a simple way of combining FSMs. The machine
below has been composed from two machines A and B, which had initial
states A1 and B1.

ε

a

b

a

a

ε
b

b

a

a

a

b

S

A1 A2 A3

B1

B2

B3

B4

B

A

5

(a) Considering machines A and B separately, give a regular expres-
sion which describes the language they accept. A: ab∗aa∗
B: (bb|aa)∗(ba|ab)

(b) Considering the whole machine, give a regular expression which
describes the language the machine accepts.
(ab∗aa∗)|((bb|aa)∗(ba|ab))

(c) LA and LB are the languages accepted by machines A and B. Give
an expression relating LA and LB to L, where L is the set of input
accepted by the whole machine. L = LA ∪ LB

(d) Construct and test a Haskell implementation of an equivalent
DFA.

4. Consider the regular expression ab(a|b)∗

(a) Describe in words the language that the expression matches. In-
clude two examples of strings that are matched. The string ‘ab’
followed by zero or more ‘a’s and ‘b’s. Examples of accepted
strings include ‘ab’, ‘abaaa’, and ‘ababba’.

(b) Design a finite state machine that accepts that language.

(c) Building on your answer to (b), design a finite state machine that
accepts ab(a|b)∗bb∗(aa)∗.

a b

a, b

b

b

ε

a

a

s1

s2

s3 s5

s4 s6

6

Is the obvious answer, but this is equivalent to

a b
a, b

a

a

b
s1

s2

s3 s5

s6

We can give this simpler FSM since, (a|b)∗bb∗ ≡ (a|b)∗b, which
follows from the facts that bb∗ ≡ b∗b and (a|b)∗b∗ ≡ (a|b)∗.

(d) Construct and test a Haskell implementation of an equivalent
DFA.

a

b

a

b

a

b

a, b

s1 s2

s3 {s3, s5}

{s3, s6}

s1 ('a':xs) = s2 xs
s1 _ = False
s2 ('b':xs) = s3 xs
s2 _ = False
s3 ('a':xs) = s3 xs
s3 ('b':xs) = s3s5 xs
s3 _ = False
s3s5 ('a':xs) = s3s6 xs
s3s5 ('b':xs) = s3s5 xs
s3s5 [] = True
s3s6 (x: xs) = s3s5 xs
s3s6 [] = False

5. Consider this NFA over the alphabet {a, b, c}.

7

c
c

c

ε

a

ε

b c

c

B1

A1 A2 A3

B2 B3

C1 C2

(a) Describe, both in words and with a regular expression, the lan-
guage accepted by this machine. Hint: think about the sequences
that end in A3 and B3. The machine accepts strings consisting of
an even number (>0) of ‘c’s followed ‘a’ or ‘b’ followed by at least
one ‘c’ followed by ‘a’.
(c(cc)∗ca)|(bcc∗a)

(b) Design a DFA that accepts the same language.

(c) Are there any NFAs that cannot be converted into an equivalent
DFA? No – all NFAs have an equivalent DFA.

8

6. Consider this DFA over the alphabet {0, 1, 2}. It should be familiar.

(a) Describe, in words, the language accepted by this machine. Hint:
Your description in words should refer to ternary numbers. This
machine accepts ternary representations of natural numbers divis-
ible by 4.

(b) Replace each transition labelled 0 by a transition labelled ε, be-
tween the same two states. The resulting automaton is not a DFA.
(Why not?)
Because a DFA has no ε transitions.

i. Construct an equivalent DFA.

ii. Describe, both in words and with a regular expression, the
language accepted by this machine.

9

There are lots of equivalent answers you can derive for this one
– but seeing that they are equivalent is not always easy. You
can do this using Arden’s rule, but it is fairly easy to see that
a string on the alphabet {1, 2} that is accepted has an even
number of 1’s, and if it has no 1’s then it has an even number
of 2’s : (22)∗(2∗12∗12)∗. (LS1 is the set of strings with an odd
number of ones.) For any string with a positive even num-
ber of ones, or no ones and an even number of twos, we can
find easily an accepting trace, so this description characterises
the accepting strings. A more-pleasing regular expression is
(22)∗(2∗12∗12∗)∗, which is equivalent to (2∗12∗12∗)∗(22)∗.

(c) Next, replace each transition (of the original machine) labelled 1
by a transition labelled ε, between the same two states.

i. Again, construct an equivalent DFA, and, ii, describe the lan-
guage it accepts.

Any string on the alphabet {0, 2} : (2 | 0)∗

(d) Repeat the exercise replacing each transition (of the original ma-
chine) labelled 2 by a transition labelled ε, between the same two
states.

i. Construct an equivalent DFA,

ii. describe the language it accepts.
Any string on the alphabet {0, 1} with an even number of 1’s
: (0∗10∗10∗)∗0∗

10

(e) BONUS QUESTION: Give a regular expression that describes the
language accepted by the original machine. Test your answer using
the grep utility.
This bonus question goes somewhat beyond the call of duty. Feel
free not to attempt it. That said, by the end of week 7 you should
have all the tools required to complete it. If you do choose to try
it, I suggest you use cut and paste in some suitable editor to make,
and keep track of the algebraic substitutions that are required.

By repeated application of Arden’s Lemma, substitution and simplifi-
cation, from the equations

L0 = L00 | L11 | L22 | ε
L1 = L01 | L12 | L30

L2 = L02 | L20 | L31

L3 = L10 | L21 | L32

For example, applying Arden’s Lemma to the final equation for L3 and
then substituting the result for L3 in the equations for L1 and L2, we
obtain,

L0 = L00 | L11 | L22 | ε
L1 = L01 | L12 | (L10 | L21)2

∗0

L2 = L02 | L20 | (L10 | L21)2
∗1

L3 = (L10 | L21)2
∗

We can apply distributivity (x | y)z = (xz | yz), for regular expressions,
together with the commutativity and associativity of |, to regroup the
equation for L2 to a form suitable for Arden.

L2 = L02 | L20 | (L10 | L21)2
∗1

= L02 | L20 | L102
∗1 | L212

∗1 (distrib)
= L02 | L102

∗1 | L20 | L212
∗1 (comm)

= L02 | L102
∗1 | L2(0 | 12∗1) (distrib)

L2 = (L02 | L102
∗1)(0 | 12∗1)∗ (Arden)

Continuing in similar vein, to eliminate L2 and L1, we eventually apply
Arden to an equation for L0, to derive
L0 = (0|2(0|12∗1)∗2|(1|2(0|12∗1)∗12∗0)(2|02∗0|02∗1(0|12∗1)∗12∗0)∗(1|02∗1(0|12∗1)∗2))∗

11

7. Use the FSM workbench to construct a machine that accepts ternary
strings with an even number of 1s and an even number of 2s (and any
number of 0s) that represent a number that is not a multiple of four.

Hint: start by constructing a machine that accepts ternary strings S
that satisfy at least one of the following three conditions:

(a) S includes an odd number of 1s,

(b) S includes an odd number of 2s,

(c) S represents a multiple of 4.

You are asked to build a machine that accepts strings that satisy none
of these conditions.

Following the hint, construct the machine

2

11 1 2 2

0, 1

0, 10, 2

0, 2 0

0

1

0

22

0

1
2

1

12

Use the workbench to convert this to DFA, then change accepting states to
give the complement.

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0
1

2

0

1

2
0

1

2

Tutorial Activity
String matching algorithms try to find a place where one or several strings
(also called patterns) are found within a larger string or text.
String matching algorithms play a vital role in a host of applications ranging,
for example, from the detection of plagiarism, to the analysis of protein and
DNA sequences in Computational Biology.
In computational biology DNA – the stuff of which the double helixes that
carry genetic information are made – consists of two chains of bases.1 There
are four types of base: cytosine (C), guanine (G), adenine (A) or thymine
(T). The two chains are matched together A–T and C–G, so one chain de-
termines the other. For example, if one chain is AATCAG the other must be
TTAGTC.

1Biology is infinitely complex. This is a simplified account for the purposes of this
exercise.

13

In real-life problems biologists may search for patterns with thousands of
letters in genomes with billions of base-pairs.
For this exercise you should consider strings on the alphabet with four sym-
bols AGCT.

1. (a) Draw an NFA that will accept any string that ends with the pat-
tern CACAT. Name each state with the string it is looking for – a
string that has a trace from that state to an accepting state. So,
the starting state will have the name CACAT and the accepting
state has the name ε.

C A

A, C, G, T

C A T

CACAT

ACAT

CAT

AT

T

ε

(b) List the reachable states of the NFA, as constructed by the subset
procedure.

• CACAT

• ACAT, CACAT

• CAT, CACAT

• AT, ACAT, CACAT

• T, CAT, CACAT

A, G, T

C

A

G
, T

C

A, G
, T

C

A

G, T

C

A, G

C

TA, G, T

C

CACAT

{ACAT, CACAT}

{CACAT, CAT}

{ACAT, AT, CACAT}

{CACAT, CAT, T}

{CACAT, ε}

2. (a) Draw an NFA that will accept any string that includes a close
match to the pattern CACAT, where a close match is either ex-
actly this string, or a string CACATof the same length that differs
from the given pattern at at most one letter. Hint: some states
will be looking for an exact match, and some for a close match.

C A

A, C, G, T

C A

A
, C

, G
, T

A
, G

, T

A C A T

C
, G

, T

A
, G

, T

C
, G

, T

-cacat -acat -cat -at -t

εacat cat at t

The top row includes
states looking for a string that may include an error; the bottom

14

row is reached when we encounter an error – so we must find an
exact match for the remainder of the search string.

3. If time permits, derive a Haskell program inplementing the DFA for
the first of these tasks. Each state of the DFA corresponds to a set of
states of the NFA – each state of the DFA is looking for any one of the
strings corresponding to the NFA states it includes. If we fail to find
the first letter of the shortest string we are looking for, we can fall back
to look for the next shortest string.
cacat ('c':xs) = acat xs
cacat (x:xs) = cacat xs
cacat [] = False
acat ('a':xs) = cat xs
acat ('c':xs) = acat xs
acat (x:xs) = cacat xs
acat [] = False
cat ('c':xs) = at xs
cat ('x':xs) = cacat xs
cat [] = False
at ('a':xs) = t xs
at ('c':xs) = acat xs
at (_:xs) = cacat xs
at [] = False
t ('t':xs) = True
t ('c':xs) = at xs
t [] = False

cacat ('c':xs) = acat xs
cacat (x:xs) = cacat xs
cacat [] = False
acat ('a':xs) = cat xs
acat xs = cacat xs
cat ('c':xs) = at xs
cat xs = cacat xs
at ('a':xs) = t xs
at xs = acat xs
t ('t':xs) = True
t xs = cat xs

We name each state by the shortest string it is searching for. Here are two
equivalent implementations. The first directly translates the DFA.
The second implementation makes use of a special property of simple string
search. For example, if we reach the state CACAT, CAT, T, we have already
seen the string CACA, and our search could be completed by finding any one
of the three strings CACAT, CAT, T. We examine the next letter of the input,
call it x. If it matches the first letter of the shortest string we move on. If it
fails this match, we try the next shortest. The direct implementation of the
DFA precomputes the next move, based on the value of x. In this example,
if x is C, we call the function for state ACAT, AT, CACAT with the remaining
input.
We can instead simply pass the problem including the letter we have just
examined back to the function we have already written for the state CACAT,
CAT. We do this in the second implementation. This is certainly easier to
write, and it may be faster than the DFA implementation.
This second implementation corresponds to the famous KMP algorithm:
https://en.wikipedia.org/wiki/Knuth–Morris–Pratt_algorithm

15

