
Informatics 1 - Computation & Logic:
Tutorial 3

Counting

Week 5: 16-20 October 2016

Please attempt the entire worksheet in advance of the tutorial, and bring
all work with you. Tutorials cannot function properly unless you study
the material in advance. Attendance at tutorials is obligatory; please let
the ITO know if you cannot attend.

You may work with others, indeed you should do so; but you must develop
your own understanding; you can’t phone a friend during the exam. If
you do not master the coursework you are unlikely to pass the exams.

If we want to go beyond yes/no questions, it is natural to ask, How many ...? We
are interested in sets, so we will ask how many elements there are in a set. We will
focus on finite sets. We write |A| or #A for the number of elements in A

I Let A and B be disjoint finite sets , with at least one element, b ∈ B (A and B
may have other elements).

(a) Is b ∈ A? No, by the definition of disjoint set.

Use arithmetic operators to give expressions for the following numbers:

(b) |{}| = 0

(c) |A ∪ {b}| = |A|+ 1
We know from I(a)a that b /∈ A,
so A ∪ {b} has one more member
than A.

(d) |{〈a, b〉 | a ∈ A}| = |A|

(e) |A ∪B| = |A|+ |B|
The general formula relating the
size of sets to the size of their

union is |A|+ |B| − |A∩B|: how-
ever, A and B are disjoint, which
means that |A ∩ B| = {}. But,
as you should have found in I(b),
|{}| = 0.1

(f) |A×B| = |A| × |B|
(g) |℘A| = 2|A|

In selecting a subset of A, one
has to make a binary decision for
each member of A, determining

1When two sets are disjoint we may write A+B for A ∪B.

1

whether the member will be in the
subset. Thus each subset if the

result of |A| binary decisions, re-
sulting in 2|A| possible outcomes.

(h) |{f | f : A→ B}| = |B||A|
In selecting a mapping from each of the members of A to any of the mem-
bers of B, for each member of A, one must decide between |B| options;
thus, with |A| many |B|-fold decisions, there will be |B||A| possible out-
comes. Each subset of X ⊆ A determines a function x : A −→ {0, 1},
given by x(a) = 1 if a ∈ X;x(a) = 0 if a 6∈ X. The subset can be recov-
ered from this function: X = {a ∈ A | x(a) = 1}. So, if we write 2 for
{0, 1}, your answer for I(g) should appear as a special case of the answer
to this question.2

(i) |{R ⊆ A× A | R is a total ordering of A}| = |A|!
An ordering of a set A is a binary relation R with some special properties
(see Chapter 3 of MML).
Examples of orderings include the orderings, <, ≤, on natural numbers,
or ⊂, ⊆ on the subsets of a set A

≤ = {〈x, y〉 ∈ N× N | x ≤ y} < = {〈x, y〉 ∈ N× N | x < y}

⊆ = {〈X, Y 〉 ∈ ℘A×℘A | X ⊆ Y } ⊂ = {〈X, Y 〉 ∈ ℘A×℘A | X ⊂ Y }

Here we represent each relation as a set, so, for example,

x < y iff 〈x, y〉 ∈ < X ⊆ Y iff 〈X, Y 〉 ∈ ⊆

Notice that each ordering comes in two forms, weak (≤,⊆), and strong
(<,⊂). The weak and strong forms are closely related

x ≤ y iff x < y or x = y X ⊂ Y iff X ⊆ Y and X 6= Y (weak-strong)

Each of these relations is transitive, for example,

x < y and y < z → x < z X ⊆ Y and Y ⊆ Z → X ⊆ Z (transitive)

The weak forms are reflexive and antisymmetric, while the strong forms
are irreflexive. Examples:

x ≤ y and y ≤ x ↔ x = y (reflexive (←), antisymmetric (→))
X ⊂ Y → X 6= Y (or equivalently, X = Y → X 6⊂ Y) (irreflexive)

2One way to represent the natural numbers as sets is to define

0 = ∅ (zero is emptyset)
n+ 1 = n ∪ {n} (the successor of n has one extra element)

Then n = {0, . . . , n− 1} is a set with n elements, and m < n iff m ∈ n.

2

These properties characterise weak and strong partial orders. A weak
partial order, �, is like ⊆ and ≤ in that it is transitive, reflexive, antisym-
metric relation. The related strong (partial) order, defined as in equations
weak-strong, is transitive and irreflexive. We can also define a transitive,
reflexive, antisymmetric relation � from a transitive irreflexive relation ≺,
again using the weak-strong equations above. Thus each partial ordering
can be represented by a strong or a weak ordering relation. Note that any
transitive, irreflexive relation x ≺ y – that is, any weak partial order – is
also antisymmetric, in the sense that x ≺ y → y 6≺ x.
Thus far we have been discussing the similarities between the orderings of
subsets and of numbers. The key difference between the two examples is
that when we draw a diagram of the two orderings, one is linear and the
other, in general, is not.3
The diagram below shows three partial orders: the linear ordering of the
numbers less than 8, the partial ordering of the eight subsets of 3 =
{0, 1, 2}, and an abstract partial ordering of eight elements {a, b, c, d, e, f, g, h}.

h

g

f

e

d

c

a

b

0

1

3

5

2

7

6

4

7

6

5

4

3

2

1

0

We say a weak partial ordering � of X is total, or linear iff

for all x, y ∈ X. x � y or y � x .

The corresponding condition for totality of a strong ordering ≺ is that

for all x, y ∈ X. x ≺ y or y ≺ x or x = y .

The diagram shows some basic relationships. If there is an arrow x → y
then x < y. But we also assume transitivity, so in the third diagram f < g
– since we have arrows f → b→ g.
Each finite total order looks essentially like the first diagram. If A has n
elements, then we can arrange them in increasing order, x0 → x1 → . . .→
xn−1, indexed by the numbers 0, . . . , n− 1.
How many such arrangements are there? We have n choices for x0, but

3When is the inclusion ordering on ℘(X) linear?

3

then, since we can include each element only once, there are n− 1 choices
left for x1, and so on – n − i choices for xi – until we have only one
(n − (n − 1))choice for xn−1. So the total number of ways we can make
these sucesive choices is n× (n− 1)× . . .× 1 = n!.
This even works for the case n = 0. There is only one way to order the
empty set, so 0! = 1.

II Give rules, in the style of Tutorial 0, to generate the following sets:

(a) the set F ⊆ ℘N of finite subsets of the natural numbers, N.

{} ∈ F
n ∈ N, F ∈ F → F ∪ {n} ∈ F

(b) the set N of natural numbers

0 ∈ N
n ∈ N→ n + 1 ∈ N

The natural numbers N = {0, 1, 2, 3, 4, . . .} correspond to the sizes of finite sets.
For a finite set, the answer to the question, How many?, will be a number. Since
∅ = {} is a finte set, 0 is a natural number.

In most living languages it is possible to name an arbitrary natural number. so,
we can use natural language to give the answer. However, these names soon become
unwieldy.

Tally marks are a unary numeral system. Each element of the set we are counting
is represented by a separate mark, a stroke. For example, the numbers one, two,
three are represented by :, ::, :::. To make this notation more easily legible, for larger
numbers we use clusters. For example, four, five, six are represented by ::::, ;, ;:;
twelve is represented by ;;::;

In our everyday lives, we usually use decimal notation for natural numbers. A
finite sequence of n digits xi ∈ {0, . . . , 9} represents a number.

〈xn−1, . . . , x0〉 represents
∑
i<n

10ixi

Binary notation is similar. A finite sequence of n digits xi ∈ {0, 1} represents a
number.

〈xn−1, . . . , x0〉 represents
∑
i<n

2ixi

In general, for k-ary notation (k > 1), a finite sequence of n digits xi ∈ {0, . . . , n− 1}
represents a number.

〈xn−1, . . . , x0〉 represents
∑
i<n

nixi

4

For n-ary notation with n ≤ 10 we use the normal digits 0,n − 1. We then move
on to use letters of the alphabet as digits > 10. So the hexadecimal (16-ary) digits
are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F .

III Each row of the table below should show the same number represented in the
various bases.

(a) Complete the table.

Base 2 3 5 7 8 10 16
Name binary ternary octal decimal hexadecimal

1111 120 30 21 17 15 F

1000 22 13 11 10 8 8

10010 200 33 24 22 18 12

10110 211 42 31 26 22 16

101010110 110200 2332 666 526 342 156

111000000 121121 3243 1210 700 448 1C0

1010011010 220200 10131 1641 1232 666 29A

10101011 20100 1141 333 253 171 AB

When we represent a number in base n, we use digits 0–n − 1. Just as the
places in decimal notation count units, tens, hundreds, thousands, etc., the
places in n-ary notation represent units, ns, n2s, n3s, etc. Just as with decimal
arithmetic, when we add multiply, subtract, or take powers of numbers in base
n, the value in the units position of the result depends only on the value(s) in
the units position of the argument(s).
The arithmetic of the units position is called arithmetic mod n, (arithmetic
modulo n). We write x mod n for the value of the digit in the n-ary expansion
of x. It is just the remainder of the integer division of x by n.
Both (x mod n), and the result, (x div n), of the integer division, can be defined
by the following properties:

0 ≤ x mod n < n x = n× (x div n) + (x mod n)

Note the connection between binary, octal and hexidecimal; three binary digits
represent one octal digit; four binary digits (a nibble) represent one hex digit
— and two nibbles form an eight-bit byte. One can divide any binary number
into four-bit nibbles, in which each nibble is equivalent to one digit of hex; or
divide it into 3-digit blocks equivalent to single digits in octal (adding leading
zeros if required).
Consider the last four rows in the table above. Here is how the binary, octal,
and hexidecimal line up.

5

Hex cols 256s 16s 1s
Oct cols 512s 64s 8s 1s
Bin cols 2048s 1024s 512s 256s 128s 64s 32s 16s 8s 4s 2s 1s

342 in hex 1 5 6

...in oct 0 5 2 6

...in bin 0 0 0 1 0 1 0 1 0 1 1 0

448 in hex 1 C 0

...in oct 0 7 0 0

...in bin 0 0 0 1 1 1 0 0 0 0 0 0

666 in hex 2 9 A

...in oct 1 2 3 2

...in bin 0 0 1 0 1 0 0 1 1 0 1 0

171 in hex 0 A B

...in oct 0 1 7 1

...in bin 0 0 0 0 1 0 1 0 1 0 1 1

Thus we see that, for instance, where we get a 2 in octal, the corresponding
binary triplet is 010; where we get an A in hexidecimal, the corresponding nibble
is 1010: Oct 2 = Bin 010, Hex A = Dec 10 = Bin 1010.4

4You’ve come this far and have earned a joke. Why do computer scientists always mix up
Hallowe’en and Christmas? Because 31(oct) = 25(dec).

6

(b) Complete the addition and multiplication tables for arithmetic mod 3, 5, and 7.
Remember, this is just the arithmetic of the units column, so each square
should contain just one digit in the range 0–n− 1.

+ 0 1 2
0 0 1 2

1 1 2 0

2 2 0 1

× 0 1 2
0 0 0 0

1 0 1 2

2 0 2 1

+ 0 1 2 3 4
0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

7

IV This question concerns the 256 possible truth valuations of the following eight
propositional letters A,B,C,D,E, F,G,H. For each of the following expres-
sions, say how many of the 256 valuations satisfy the expression, and briefly
explain your reasoning. For example, the expression D is satisfied by half of the
valuations, that is 128 of the 256, since for each valuation that makes D true
there is a matching valuation that make D false.

(a) A ∧B 64

(b) (A ∨B) ∧ C 96

(c) (A→ B)→ C 160

(d) (A→ B)∧(B → A)∧(C → D)∧(D → E)∧(E → F)∧(F → G)∧(G→ H)

We can use the arrow rule to solve this:

We find 2 valuations for A and B.

...and 7 for C, D, E, F , G, and H, giving 2× 7 = 14 valuations in total

8

(e)

(A→ B) ∧ (B → A) ∧ (C → D) ∧ (D → C)

∧ (E → F) ∧ (F → G) ∧ (G→ H)

We find 2 valuations for A and B.

...2 valuations for C and D.

...and 5 for E, F , G, and H, giving 2× 2× 5 = 20 valuations in total

9

(f)

(H → A)∧(A→ B∧C)∧(B∨C → D)∧(A→ E)∧(E → F)∧(F → G)∧(G→ H)

Noting that A→ B∧C is equivalent to (A→ B)∧(A→ C) and (B∨C → D)
is equivalent to (B → D) ∧ (C → D), we derive the following graph, giving 6
satisfying valuations:

Tutorial Activities
1. As usual, buddy-up and take the first 20 minutes of the tutorial to check through

your anwers to the homework exercises, I–IV.

Ask others in your group, or call on one of the tutors if you have unresolved
questions.

The main activity for this tutorial is on the next page. It introduces an idea that will
be crucial to your understanding of the resolution procedure that is one of the key
topics of this course.

10

Combining Constraints

In this exercise we consider a formula in conjunctive normal form (a conjunction of
disjunctions of literals) as a set of constraints — each conjunction of literals is a
constraint.

You should already have observed, while doing the tutorial exercises, that when
we have two sets of constraints that are independent, in the sense that they share no
common propositional letters, then we can solve each set of constraints separately,
and then combine the answers.

2. Consider two sets of constraints

Γ = (R ∨B) ∧ (¬A ∨G) ∆ = (¬R ∨ A) ∧ (¬B ∨G)

(a) How many of the sixteen states of R,B,A,G satisfy Γ ?
9 – there are 3 ways of satisfying each constraint.

(b) How many satisfy ∆ ? 9

(c) Use the distributive law to write down the CNF for Γ∨∆. This gives a set
of constraints that is satisfied by exactly those states that satisfy either Γ
or ∆ or both.

Hints: In algebra (ab + cd)(wx + yz) = abwx + abyz + cdwx + cdyz.
In logic any constraint that includes both an atom and its negation is

trivially satisfied, and can be omitted.

Γ ∨∆ = ((R ∨B) ∧ (¬A ∨G)) ∨ ((¬R ∨ A) ∧ (¬B ∨G)) =

(R ∨B ∨ ¬R ∨ A) ∧ (¬A ∨G ∨ ¬R ∨ A) ∧ (R ∨B ∨ ¬B ∨G) ∧ (¬A ∨G ∨ ¬B ∨G)

= ¬A ∨G ∨ ¬B

(d) How many states of RBAG satisfy Γ ∨∆?
14 – all except the two states that satisfy A ∧ ¬G ∧B.

(e) How many states satisfy Γ ∧∆?
4 = 9+ 9 - 14
To understand this calculation consider: The set of states satisfying Γ
consists of two disjoint subsets: those satisfying Γ∧∆ and those satisfying
Γ ∧ ¬∆. The set satisfying ∆ also consists two disjoint subsets: those
satisfying Γ ∧ ∆ and those satisfying ¬Γ ∧ ∆. The set satisfying Γ ∨ ∆
consists of three: Γ∧∆, Γ∧¬∆, and ¬Γ∧∆. Remember from q1.e of the
homework that the cardinality of the union of disjoint sets is always equal
to the sum of the cardinalities of the sets individually. Thus,

|Γ|+ |∆| = 2|Γ ∧∆|+ |Γ ∧ ¬∆|+ |¬Γ ∧∆|

11

and
|Γ ∨∆| = |Γ ∧∆|+ |Γ ∧ ¬∆|+ |¬Γ ∧∆|

therefore
|Γ|+ |∆| − |Γ ∨∆| = |Γ ∧∆|

3. Consider the following set of constraints:

Ω = (X ∨R ∨B) ∧ (X ∨ ¬A ∨G) ∧ (¬X ∨ ¬R ∨ A) ∧ (¬X ∨ ¬B ∨G)

How many states of the five boolean variables XRBAG satisfy Ω ?

Hint: Divide the states that satisfy Ω into two disjoint subsets by considering
separately the states where X is true and the states where ¬X is true, then
refer to the previous question.

18 – the states where X is true must satisfy ∆; those where X is false must satisfy Γ.
These two sets are disjoint (they have no elements in common, because the elements
of one have X = > and the elements of the other have X = ⊥).

This tutorial exercise sheet was written by Michael Fourman and Dave Cochran. Send
comments to Michael.Fourman@ed.ac.uk

12

