
Informatics 1 - Computation & Logic:
Tutorial 4

Propositional Logic: Conjunctive Normal Form
(CNF) 1

Week 5: 17–21 October 2016

Please attempt the entire worksheet in advance of the tutorial, and
bring with you all work, including (if a computer is involved) print-
outs of code and test results. Tutorials cannot function properly
unless you do the work in advance.

You may work with others, but you must understand the work; you
can’t phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do
not contribute to the final mark. But coursework is not optional. If
you do not do the coursework you are unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if
you cannot attend.

CNF
An expression is in conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals, where a literal is either an atomic propositional symbol
or a negated atomic propositional symbol.

For example,
(¬A ∨ ¬G ∨R) ∧ (A ∨G) ∧ ¬R (1)

We call a disjunction of literals a clause, or constraint. Since ∨ is associa-
tive and commutative, we can view a clause as the disjunction of a (finite) set
of literals.

There are three clauses in (1), with three elements, two elements, and one
element, respectively:

{¬A,¬G,R} {A,G} {¬R} (2)
1This tutorial exercise sheet was originally written by Paolo Besana, and extended by

Thomas French, Areti Manataki, Michael Fourman, and Dave Cochran. Send comments to
Michael.Fourman@ed.ac.uk

1



Since ∧ is also associative and commutative we can view a CNF as a set of
clauses. So we can represent each CNF as a (finite) set of finite sets of literals
which we call its clausal form.

The clausal form for Equation 1 is the set whose elements are the three
clauses given in (2): {

{¬A,¬G,R}, {A,G}, {¬R}
}

We treat > as the empty conjunction (of no clauses), and ⊥ as the empty
disjunction (of no literals). So, a clause is ⊥, or a literal, or a disjunction of
clauses; and a conjunctive normal form is a conjunction of zero or more clauses.

We will often call the individual clauses constraints. A state satisfies a given
constraint iff it makes the corresponding disjunction true, that is, if it makes at
least one of the literals in the constraint true. The empty clause can never be
satisfied – there is no literal we can make true – it corresponds to ⊥..

A state satisfies a given clausal form if it makes the corresponding con-
junction true; that is, iff it satisfies every clause in the conjunction. The empty
clausal form is always satisfied; it corresponds to >.

1. For the purposes of this tutorial, it will be helpful to have a shorthand
code for referring to the eight states represented by three boolean values
assigned to the propositional lettersR,A,G, and the corresponding regions
of the Venn diagram.
If R,A,G have binary values r, a, g with 1 representing > and 0 repre-
senting ⊥, we will refer to the state using the decimal value of the binary
string rag. Thus 0 represents the state 000 in which all three atoms are
false, while 7 represents the state 111 in which they are all true.

(a) Label each of the eight atomic regions in the Venn diagram with the
corresponding number.

(b) Say which states satisfy each of the following:
i. the constraint {A,¬R}, 0,1,2,3,6,7
ii. the constraint {¬G,R}, 0,2,4,5,6,7
iii. the clausal form

{
{A,¬R}, {¬G,R}

}
, 0,2,6,7

iv. the constraint {¬G,A}0,2,3,4,6,7
Note that adding the final constraint (given by resolution) would not
eliminate any further states. The first constraint eliminates states
4, 5, where ¬A∧R. The second eliminates states 1, 3, where G∧¬R.
The state given by resolution eliminates states 1, 5 where G ∧ ¬A –
both of which have already been eliminated.

2



2. The following expressions in CNF, on the left, are represented by the
clausal forms shewn on the right:

¬A ∼
{
{¬A}

}
(3)

A ∨ ¬G ∨ ¬R ∼
{
{A,¬G,¬R}

}
(4)

A ∧ (¬G ∨ ¬R) ∼
{
{A}, {¬G,¬R}

}
(5)

A ∧ ¬G ∧ ¬R ∼
{
{A}, {¬G}, {¬R}

}
(6)

(A ∨ ¬G) ∧ (¬R ∨A) ∼
{
{A,¬G}, {¬R,A}

}
(7)

(A ∨G ∨ ¬R) ∧ (¬G ∨ ¬R)

∧A ∧ (¬G ∨ ¬A)
∼


{A,G,¬R},

{¬G,¬R}, {A},
{¬G,¬A}

 (8)

, , , ,⊥ ∼
{
{ }
}

(9)

> ∼
{}

(10)

For each of these expressions use the coding introduced in Question 1 to
identify the atomic regions of the Venn diagram excluded by each of its
clauses.

¬A A ∨ ¬G ∨ ¬R A ∧ (¬G ∨ ¬R) A ∧ ¬G ∧ ¬R
2,3,6,7 5 0,1,4,5; 5,7 0,1,4,5; 1,3,5,7; 4,5,6,7

(A ∨ ¬G)

∧ (¬R ∨A)

(A ∨G ∨ ¬R)

∧ (¬G ∨ ¬R)

∧ A ∧ (¬G ∨ ¬A)

⊥ >

1, 5; 4, 5 4; 5, 7; 0, 1, 4, 5; 3, 7 0, 1, 2, 3, 4, 5, 6, 7 none

3



Conversion to CNF
To turn a CNF expression into clausal form, we simply turn each conjunct into
a set of literals, and then convert the whole conjunction into a set of constraints,
that is, a set of sets of literals. However, many expressions, for example,

(¬A ∨ G)→ R (11)

are not in CNF.
To convert an arbitrary expression of propositional logic into CNF, and hence

into a set of constraints, we apply the following equivalences:

X ↔ Y ≡ (X → Y ) ∧ (Y → X) (↔)
X → Y ≡ ¬X ∨ Y (→)
X ⊕ Y ≡ (X ∨ Y ) ∧ (¬X ∨ ¬Y ) (⊕)

¬(X ∧ Y ) ≡ ¬X ∨ ¬Y (¬∧)
¬(X ∨ Y ) ≡ ¬X ∧ ¬Y (¬∨)

¬¬X ≡ X (¬¬)
X ∨ (Y ∧ Z) ≡ (X ∨ Y ) ∧ (X ∨ Z) (dist-∨)

We make liberal use of the associativity and commutativity of conjunction and
disjunction. So, for example,

X ∧ (Z ∧ Y ) ≡ (X ∧ Y ) ∧ Z (for which we write X ∧ Y ∧ Z)
(Y ∧ Z) ∨X ≡ X ∨ (Y ∧ Z) (equivalent, by dist-∨, to (X ∨ Y ) ∧ (X ∨ Z))

To convert an arbitrary expression to CNF:

• eliminate implications etc. by rewriting in terms of ∧,∨,¬;

• push negations inside ∧ and vee, using de Morgan (¬∨,¬∧ and eliminate
¬¬;

• push ∨ inside ∧ using dist-∨.

Thus we can convert the expression in (11) into CNF as follows:

(¬A ∨ G)→ R (→)

⇒ ¬(¬A ∨ G) ∨R (¬∨)
⇒ (¬¬A ∧ ¬G) ∨R (¬¬)
⇒ (A ∧ ¬G) ∨R (dist-∨)
⇒ (A ∨R) ∧ (¬G ∨R) ()

In other words, as you can verify this using a truth table, the expression in (11)
is logically equivalent to the following CNF expression:

(A ∨R) ∧ (¬G ∨R) (12)

4



To turn a CNF expression into clausal form, simply turn each conjunct into
a set of literals, and then convert the whole conjunction into a set of sets of
literals.

Thus the clausal form of the CNF expression in (12) is the following:{
{A,R} , {¬G,R}

}
(13)

The constraint {A,R} excludes states of the form 00x, these are states 0 (000)
and 1 (001); the constraint {¬G,R} excludes the states of the form 0x1, these
are states 3 (011) and 1 (001).

3. For each of the following expressions compute a CNF and list the states
excluded by each clause of your CNF.

R→ A A→ G G→ R

(R→ A)

∧(A→ G)

∧(G→ R)

4, 5 2, 6 1, 3 4, 5; 2, 6; 1, 3

(R ∧A)→ G G→ (A ∨R) (G ∨A)→ R

((R ∧A)→ G)

∧(G→ (A ∨R))

∧((G ∨A)→ R)

¬R ∨ ¬A ∨G ¬G ∨A ∨R (¬G ∨R) ∧ (¬A ∨R)

(¬R ∨ ¬A ∨G)

∧(¬G ∨A ∨R)

∧(¬G ∨R) ∧ (¬A ∨R)

6 1 1, 3; 2, 3 6; 1; 1, 3; 2, 3

5



4. Bonus question!

• For our language with three atoms, R,A,G how many different clauses
are there?
Hint: count the clauses that mention 0, 1, 2, or 3 of the atoms.

• For each example in the right-hand column of Question 3, you have
produced a set of clauses to give a CNF.
Which other clauses, if any, can be added to your CNF without
excluding any additional states? Is there a pattern?

When we can add a new constraint without excluding any additional
states, we say the new constraint is entailed by the existing constraints.
The point of this ’bonus question’ is to introduce the notion of entailment.
We use the ’turnstile’ (`) notation for entailment: if Γ is a set of constraints
(a clausal form), and ϕ is a constraint we write

Γ ` ϕ

to indicate that the constraints in Γ entail ϕ.
A constraintX is entailed by a set of constraints Γ iff the set of states it ex-
cludes is covered by the union of the sets of states excluded by constraints
in Γ.
We can always weaken a constraint by adding further disjuncts to the
clause – the exclusions associated with such a weakening are covered by
the exclusions of the original clause – but we are primarily interested in
the non-trivial entailments.

In the top line, the constraints R → A, A → G, G → R, taken together,
eliminate the states 1, 2, 3, 4, 5, 6. Observe that this can be achieved equally
well by the (equivalent) set of contraints A→ R, G→ A, R→ G.

So, for
(R→ A)

∧(A→ G)

∧(G→ R)

, the non-trivial entailments are
(A→ R)

∧(G→ A)

∧(R→ G)

On the bottom line, our constraints, taken together eliminate four states,
1, 2, 3, 6. We can achieve the same effect with two simple constraints,
A→ G (which eliminates 6, 2), and G→ R (which eliminates 1, 3).

So, for
((R ∧A)→ G)

∧(G→ (A ∨R))

∧((G ∨A)→ R)

, the non-trivial entailment is A → G (G → R

arises in the normal form of the third conjunct).

6


