
Informatics 1 - Computation & Logic:

Tutorial 1

Logic, States and Transitions

Week 3: 3–7 October 2016

Please attempt the entire worksheet in advance of the tutorial, and bring

with you all work, including (if a computer is involved) printouts of code

and test results. Tutorials cannot function properly unless you do the

work in advance.

You may work with others, but you must understand the work; you can’t

phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do not

contribute to the final mark. But coursework is not optional. If you do

not do the coursework you are unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you

cannot attend.
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1.

17

There are 8 
regions in the 
diagram. How 

many subsets of 
this set of 8 

regions are there?

Given any subset of the eight regions can you 
write a complex proposition to which it 

corresponds  
(using and, or, and not as connectives)?

Exercise 1.1

You may want to come back to this question after you have completed the rest
of the tutorial.
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To describe an arbitrary subset you must, for each region, specify 
whether it is included or not; thus, there are two possibilities for each 
region, and eight regions. Hence, there are 2  = 256 subsets.

The second part of the question can be answered by characterising 
each region in the subset by a conjunction of literals, and then taking 
the disjunction of these. (There are also other ways.)
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2.

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

Exercise 1.2

24

Slide 20 (of lecture 2) shows an implementation of the traffic light controller. 
We could have designed our logic differently.  
For example, letting 
A’ = G or (R and not A).  
Draw the circuit for this implementation. 
Is this a correct implementation of the controller? Explain your answer.
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This implementation is based on a logical characterisation, for each light, of the set of 
current states such that the light is on in the next state. Check that the expression for 
A’ gives the correct answer in each of the four cases.



In tutorial you should discuss the fact that the expression for A’ is NOT logically 
equivalent to that given in class (A’ = ¬A). However, on the assumption that we start 
in one of the legal states (for example, ((R ⋁ A) ⊕ G), they are equivalent.



Check that: ((R ⋁ A) ⊕ G) → ((¬A) ↔ (G ⋁ (R ∧ ¬A)) is a tautology.



3.

Exercise 1.3
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A ^ B

A _ B A ! B

¬A B

28

Each of the 16 2x2 tables above represents the truth table of a binary boolean 
operation.  
Label each table with a boolean expression for which it is the truth table (five 
tables are already labelled – begin by checking whether these are correct). 
How many of the binary operations actually depend on both variables? 
How many depend on only one variable? 
How many depend on no variables?
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T

⊥

¬(A⋁B)

¬(A⋀B)

A ¬B

¬(B→A) ¬(A→B)

A ⊕
B

A↔B

B→A

2
4

10

Note the symmetries and duality apparent in the diagram.

If we think of each truth table as a set of valuations, then the sets are 
arranged by size (number of 1s in the truth table).

Of course we can use de Morgan, and expansions of → and ⊕, etc., to 
give other equivalent expressions.












































































































































4.

Exercise 1.4

R

A G

RA

RA

GA

R

29

As discussed in the lecture, the diagram represents the beginnings of a refinement of our description of 
the traffic light controller. We model a sensor that detects a car ready to pass the light. For each state of 
the lights, (R, RA, G, A) we have two states, one (with a double circle) where there is a car, and the other, 
without a car, as before. 
Draw arrows to indicate state changes that still obey the correct sequence for the lights, but also respect 
the following two rules. 
1. A car can only pass the light if it is green. 
2. The light only changes from red to red-amber when a car is detected 
Optional: You may also design  the logic for the controller.  
Use a new boolean variable C to represent the presence of a car, and give equations for R’ A’ and G’. 
Should we also give an equation for C’ ? 
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This machine responds to an external event, the 
arrival of a car. We shouldn’t give an equation.

Discuss what may happen if a car breaks the 
rules, and runs a red light.












































































































































5.

A

D B

C

The traffic light has only four states.  
the diagram shows a two-bit encoding of these 
four states. If we call the two bits X and Y then 
the next state logic can be given by 

Xʹ = X ⨁ Y and Yʹ = ¬Y 

and the output logic (the signals to the lights) by 

 R = ¬X    A = Y    G = ¬X ∧ Y

R

A

G

A B C D

00

11 01

10

00 01 10 11XY

Give expressions for the next state logic 

      Xʹ =                         Yʹ =       
    

and the output logic 
 
       R =                    A =                  G =

R

A

G

A B C D00

10 01

11

00 01 11 10XY

This question concerns a 
different two-bit encoding 
of the four states, as 
shown below.
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Y ¬X

¬X X ∧ YX ⨁ Y



6.

29

How can we use logic to specify the 
transitions?

This is a non-deterministic system. 
We define a next state relation.

Again we introduce next state 
variables WW′ etc.

Here we have 
FW ∧ WW ∧ GW ∧ CW 

Is it possible that WE′ ?     NO

One thing true in our model is that
WE′ → WE ∨ WB

What else do we need to say to give 
a complete description ?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

What does it mean for a description to be complete?
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Here, we are seeking to characterise a set of possible locations of four entities, in which each can be 
in exactly one of three places; to characterise a set of possible state transitions (an entity cannot get 
from one riverbank to the other without passing over the river); a set of illegal conditions; and from 
there work out which legal states are connected by possible transitions. The result is a logical model 
of the possible ways the farmer-goose-wolf-corn system could develop over time, which can then be 
used to characterise how the farmer can get from an initial state (everything west) to a goal state 
(everything east). If we accomplish this, is our description complete?



In fact, no. There are lots of other possible outcomes that could come about if an actual farmer, wolf, 
goose, and bag of corn. A wild animal might show up on one bank while the farmer is on the other 
and eat one of the unattended entities. The wolf might not be hungry. The goose might be large and 
aggressive. The model we have abstracts away from the actual situation, coding some regions of the 
actual range of possibilities into categories; sets that we indicate with the states of the model—thus 
WE encodes the (arbitrarily large) set of possible states of the world in which the wolf is on the east 
bank. Other possible states of the world (A robber or wild animal shows up, the boat springs a leak, 
a 50km asteroid annihilates all life on Earth) are simply not considered at all.



However, it should not be thought that this 'incompleteness'—the abstractions and idealisations 
involved in building a logical model of real-world conditions—is a weakness of the model. On the 
contrary, having an abstract model allows us to find solutions to problems that would be much 
harder to find in a more detailed model. It allows us to create a model that can be applied to multiple 
situations. It allows us to find patterns and explanations that of real phenomena that more detailed 
models would obscure.



NOTE OF CAUTION: There is another sense of the word 'complete', specific to formal systems such 
as logic and mathematics, which we will be introducing later in the course. Do not confuse the 
informal sense of the word used here with the technical sense that will come up later; they are quite 
different. 



7. We used four conditions to define the state space for the Wolf, Goose, Corn

puzzle, using 12 atomic propositions. This question asks you to do the same

using a different set of atoms.

West East

WW WB WE

CW CB CE

GW GB GE

FW FB FE
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(WW ⊕ WB ⊕ WE) ∧ ¬(WW ∧ WB ∧ WE) 
GB → FB 

GW ∧ (WW ∨ CW) → FW 
¬(GB ∧ CB) ∧ ¬(GB ∧ WB) ¬(WB ∧ CB)

one place 
not solo 

no conflict 
no overload

×4 (wolf,goose,corn,farmer) 
×3 (wolf,goose,corn) 
×2 (east, west) 
×1

West East

WW WE

CW CE

GW GE

FW FE
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WB ↔ (WW  ∧ WE) 
WW ↔ ¬WW

×4  
×8

WW ∨ WE one place 
not solo 

no conflict 
no overload

×4  
×3 
×2 
×1

This encoding uses only 8 
propositional atoms – 256 states. 

The oneplace axiom is now simpler. 
Each instance eliminates one 
quarter of the remaining states, 
leaving 192 , 144, 108, and 81

We can use different atoms to 
model the system. 

We introduce 8 atoms whose 
meanings are given as the 
negations of the east and west 
propositions we used earlier. 

e.g   WW ↔ ¬WW 
We can define the old propositions 
in terms of the new ones:

Give the other axioms in terms of the new atoms.
How many states are eliminated by each of your axioms?
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(¬GW ∨ ¬GE ∨ ¬CW ∨ ¬CE) ∧ 
(¬CW ∨ ¬CE ∨ ¬WW ∨ ¬WE) ∧ 
(¬GW ∨ ¬GE ∨ ¬WW ∨ ¬WE)

(GW ∧ GE) → (FW ∧ FE) 

¬GE ∧ (¬WE ∨ ¬CE) → ¬FE

>	Each instance of the nonsolo axiom is applicable to 18 states; however, since each set of the applicable states for each instance intersects with the set of each other instance for one third of it’s states, and with both others for one ninth, with each application of an instance the total number of remaining states is reduced from 81 to 63, 51, and 43.
>	Each instance of the noconflict axiom reduces the remaining states by 8. These do not overlap, so the set of remaining states is reduced to 35, then 27.
>	The nooverload axiom reduces the set of remaining states by a further 7. The this leaves a set of 20 legal states.



8. Give expressions defining the next-state relation for the Wolf, Goose, Corn

puzzle, in terms of the new atoms.

Truth tables of the basic operators

A B A ^ B

T T T

T F F

F T F

F F F

A B A _ B

T T T

T F T

F T T

F F F

A B A ! B

T T T

T F F

F T T

F F T

We can also express the truth tables for binary operations in a different style,

which makes the symmetries more immediately apparent.

x ^ y

y

0 1

x

0 0 0

1 0 1

x _ y

y

0 1

x

0 0 1

1 1 1

x ! y

y

0 1

x

0 1 1

1 0 1

x $ y

y

0 1

x

0 1 0

1 0 1

x � y

y

0 1

x

0 0 1

1 1 0

This tutorial exercise sheet was written by Michael Fourman.

Please send comments to michael.fourman@ed.ac.uk
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¬XW → XEʹ
¬XE → XWʹ
(Where X stands for one of the Farmer, the Goose, the Wolf, and the Corn)
There rules simply specify that nothing can move from one bank to the other in one time-step. This does not rule out moves to illegal states (such as everything getting in the boat at once), but it is not necessary to use the next-state rules to exclude possibilities already excluded by the legal-state axioms.


