
Informatics 1 - Computation & Logic:
Tutorial 6

Computation: Introduction to Finite State
Machines

Week 8: 9 - 13 November 2015

Please attempt the entire worksheet in advance of the tutorial,
and bring with you all work, including (if a computer is involved)
printouts of code and test results. Tutorials cannot function prop-
erly unless you do the work in advance.

You may work with others, but you must understand the work;
you can’t phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do
not contribute to the final mark. But coursework is not optional.
If you do not do the coursework you are unlikely to pass the
exams.

Attendance at tutorials is obligatory; please let your tutor know
if you cannot attend.

1

For this tutorial you may find it helpful to use Matthew Hepburn’s online
FSM tool.

1. The ATM design at
http://homepages.inf.ed.ac.uk/s1020995/atm.html
is somewhat unforgiving. If you enter the wrong PIN it keeps your
card.

Modify the machine so that it gives you three chances to enter the right
PIN, before keeping the card, and so it allows you to get the card back
after either of the first two failures, if you want to.

For the remainder of this tutorial, you will probably find it helpful to
use
http://homepages.inf.ed.ac.uk/s1020995/create.html

You can toggle each tool on and off by clicking it. When no tool is
selected you can test your FSM with different inputs - and step through
an input string (you can step backwards, as well as forwards) If you
have problems using the tool please start a thread on Piazza.

2

2. Consider the following Finite State Machine (FSM) over the (input)
alphabet {0, 1}:
There are just two states, called state A and state B. State A is the
initial state. State A is the only accept state. There are transitions
labelled ‘0’ from state A to itself and from state B to itself. There are
transitions labelled ‘1’ from state A to state B and from state B to state
A.

(a) Draw this machine.

A

0

B1
1

0

(b) Which of the following strings are accepted by this machine?
(Y/N)

ε Y
0 Y
1 N
00 Y
01 N
10 N
11 Y
101 Y
010 N
0011 Y
1011 N
1010 Y
10001 Y

11011000101 Y

(c) What property is shared by all the strings which are accepted by
this machine?
They contain an even number of 1’s.

3

(d) Does the machine accept all strings with this property?
Yes.

(e) What do the two states ‘mean’?
State A means that the machine has seen an even number of 1’s so far. State
B means that it has seen an odd number of 1’s so far.

(f) Fill out the following table so that the entry in row x column y
contains the names of all states that can be reached from state x
by a transition labelled y in the above machine:

0 1
state A A B
state B B A

Use the table to decide whether or not the machine is determinis-
tic, and explain why.
Yes, it is deterministic since every cell contains exactly one state transition.

4

3. Consider the following FSM over alphabet {0, 1}:
There are just three states — state A, state B and state C. State A is
the initial state. State C is the only accept state. There are transitions
labelled 0 from state A to state B, from state B to state C, and from
state C to itself. There are transitions labelled 1 from state A to itself,
from state B to state A, and from state C to itself.

(a) Draw this machine.

A

1

B0
1

C0

0,1

(b) What language is defined by this machine? (Think about what
the states ‘mean’.)
The set of all and only strings over {0, 1} containing two successive 0’s.
State A means that the machine hasn’t yet seen two successive 0’s and
the last symbol was a 1. State B means that the machine hasn’t yet seen
two successive 0’s and the last symbol was a 0. State C means that the
machine has seen two successive 0’s.

(c) Fill out its transition table:

0 1
state A B A
state B C A
state C C C

Is the machine deterministic? Why?
Yes, it is deterministic since every cell contains exactly one state.

5

4. Draw a finite state machine over alphabet {0, 1} which accepts all and
only those strings of which the string 101 is a substring.

An NFA is easiest.
A B

start

1

C D

0 1
0,1 0,1

Here is a DFA:

A

0
B1

1

C

0

0 D1

0,1

State A: I haven’t yet seen 101, and the last thing I saw was 00 (if at least
2 symbols have been seen). State B: I haven’t yet seen 101 and the last
thing I saw was 1. State C: I haven’t yet seen 101 and the last thing I saw
was 10. State D: I’ve seen 101! Transitions labelled 0 from A to A, from
B to C, from C to A, and from D to D. Transitions labelled 1 from A to
B, from B to B, from C to D, and from D to D.

5. Sketch a finite state machine over alphabet {0, 1} which accepts all and
only those strings consisting of a 42 zeros followed by the same number
of ones?

6

For any given number n, for example, 42, this is simple.

6. Can you design a more general finite state machine over alphabet {0, 1}
which accepts all and only those strings consisting of some number of
0’s followed by exactly the same number of 1’s?

We cannot produce a single FSM that works for all n. This is not possible
because FSMs only have finitely many states.
Let M be a DFA with k(> 0) states. Let n = 2× k. Then any trace
of the states (x1, . . . , xn) visited for an input of n zeros in succession,
must visit some state more than once, say s = xp = xq, where p < q.
Now consider the traces for the following two input sequences: let ai
be the trace of states visited for the sequence of q zeros followed by
q ones; let bj be the trace of states visited for the sequence of p zeros
followed by q ones. By construction aq = bp = s. Beyond this state,
both inputs continue with q ones, so, by induction on i, aq+i = bp+i

for all i ≤ q. In particular, the two traces end in the same state, but
one input has equal numbers of ones and zeros, while the other does
not.

7

7. A flock of starlings is called a murmuration.

m tauu r m r oi n

[a-z]

The NFA shown recognises strings, in the alphabet [a-z], that end with
this word. The transition from the start state to itself can be taken
with any letter of the alphabet.
Construct a DFA that recognises these strings.

m u r a t i o n [ˆ muration]
0 0,1 0 0 0 0 0 0 0 0
0,1 0,1 0,2 0 0 0 0 0 0 0
0,2 0,1 0 0,3 0 0 0 0 0 0
0,3 0,1,4 0 0 0 0 0 0 0 0
0,1,4 0,1 0,2,5 0 0 0 0 0 0 0
0,2,5 0,1 0 0,3,6 0 0 0 0 0 0
0,3,6 0,1,4 0 0 0,7 0 0 0 0 0
0,7 0,1 0 0 0 0,8 0 0 0 0
0,8 0,1 0 0 0 0 0,9 0 0 0
0,9 0,1 0 0 0 0 0 0,10 0 0
0,10 0,1 0 0 0 0 0 0 0,11 0
0,11 0,1 0 0 0 0 0 0 0 0

Searching for strings in a long sequence, for example, searching for
words in text, or genes in DNA sequences, is an important problem.
One of the best algorithms for many applications, and one of the most
commonly used, was invented by Bob Boyer and J Moore, in Edin-
burgh, in the 1970s. If you want to learn more you can look at J
Moore’s page
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/
although he works in Texas he is still a frequent visitor to the Forum.

8

8. Consider the Finite State Machine in the diagram:

1

 b

2 a

 a,b

3 a

 a,b

(a) Draw its transition table:

a b

1 {2} {1}
2 {2, 3} {2}
3 {3} {3}

(b) Explain why this is a non-deterministic automaton (NFA)?
It is a non-deterministic FSM because there are two possible transitions
from node 2 given the a input symbol.

(c) Give a simple english description of the language accepted by this
FSM.
A finite sequence of as and bs that contains at least two as.

(d) Give a regular expression for the language accepted by this FSM.
b∗a(a|b)∗a(a|b)∗

(e) Construct an equivalent DFA.

a b

1 2 1

2 2, 3 2

2, 3 2, 3 2, 3

9

9. Draw a finite state acceptor which accepts an infinite set of strings each
of which consists of an odd number of 0s and an even number greater
than 0 of 1s . To be more precise, if string s is accepted by the machine,
then s must:

(a) consists of an odd number of symbols;

(b) contain only 0s and 1s;

(c) contain an odd number of 0s; and,

(d) contain an even number of 1s greater than 0.

To create such acceptor, first create an acceptor for the even number
(> 0) of 1s, then another acceptor for the odd numbers of 0s, and then
put the two acceptors together using the correct operator. Explain your
choice of the operator.

A

0

B1

0

C1
1

0

D

1

E0
0

1

The first accepts an even number of 1s greater than 0, the second an
odd number of 0s.

DA

DB

1

EA0

DC

1

EB

0

1

EC

0

0

1

0

1

0

1

Intersection: a string x will be accepted by the intersection of the two ma-
chines only if it is accepted by both machines:

• 1100 is accepted by the first (even 1s), but not by the second (odd 0s)

• 1000 is accepted by the second, not by the first

• 11000 is accepted by both, and it is accepted by the intersection

10

10. (a) Do DFAs and NFAs recognise the same languages?
Yes, they recognise the same class of languages, the class of regular
languages.

(b) What advantages do NFAs have over DFAs, and vice-versa?
The determinism of DFAs makes it easy to implement them in
software or hardware, whereas the reverse is true for NFAs - their
nondeterminism makes them difficult to implement directly.
However, NFAs have the advantage that they are easier to con-
struct). As we have seen, we can build build complex NFAs in a
simple piecewise fashion — fitting smaller FSMs together. NFAs
are also useful for modelling real systems with inherent nondeter-
minism.

This tutorial exercise sheet was written by Paolo Besana, and revised by
Thomas French, Areti Manataki, and Michael Fourman. Send comments to
Michael.Fourman@ed.ac.uk

11

