
Informatics 1 - Computation & Logic:
Tutorial 3

Satisfiability and Resolution

Week 5: 19-23 October 2015

Please attempt the entire worksheet in advance of the tutorial, and bring
with you all work, including (if a computer is involved) printouts of code
and test results. Tutorials cannot function properly unless you do the
work in advance.

You may work with others, but you must understand the work; you can’t
phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do not
contribute to the final mark. But coursework is not optional. If you do
not do the coursework you are unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you
cannot attend.

1



1. Consider the encoding of a 9×9 Sudoku problem discussed in class. We use 729
propositional letters, or atoms, Pi,j,k, where i, j, k can each take integer values
from 1 to 9. A Boolean valuation of these corresponds to a 9× 9 square, filled
in such that

the number k is written in the jth row of the ith column
iff

the valuation makes Pi,j,k true

A Sudoku puzzle is specified by a partial valuation, that makes some atoms
true, to place particular numbers in some squares. A typical puzzle will leave
50–60 squares blank. We consider each total valuation extending the one given
by the puzzle to be a putative solution.

This question concerns the number of putative solutions and the Boolean con-
straints that we must impose to specify a correct solution.

(a) How many possible valuations are there? If we could check 230 putative
solutions per second, roughly how long would it take to check every puta-
tive solution for a typical puzzle?
Since there are 729 atoms, there are 2729 valuations. There are about 225
seconds in a year, and the age of the universe is approximately 234 years,
or 259 seconds. At 230 valuations per second, we can therefore compute 289
valuations in the age of the universe; meaning it would take approximately
2640 (4 × 10192) times the age of the universe to check every valuation.
However, since the last of the supermassive black holes are expected to
evaporate via Hawking radiation in only 10100 years, leaving a cold, dark
universe dominated by diffuse, low-energy photons, electrons, neutrinos,
and their antiparticles, this may be impractical.

(b) How would you express the constraint that a solution can place at most
one number in each square? How many clauses are required to express this
in CNF? Assuming the same rate of checking as in (a), how long would it
take to check only those putative solutions that satisfy this constraint?
For each square i, j, if Pi,j,x is true, and y is a number different from x,
then Pi,j,y must be false. For example,

Pi,j,1 → ¬(Pi,j,2)

So, for each i, j, x, y, with x 6= y we add the clause

Pi,j,x → ¬(Pi,j,y)

In fact, this adds each pair of unequal numbers twice. It suffices, for each
i, j, x, y, with x < y to add the clause

Pi,j,x → ¬(Pi,j,y) (9× 9× 9× 4 clauses)

2



There are 981 valuations that meet this condition, or approximately 2257;
requiring a mere 2227 seconds, 2202 years, or 2168 times the current age
of the universe. At this rate, the computation will be completed before
the heat death of the universe, but may still be considered too long to be
convenient.

(c) How would you express the constraint that a solution must place every
number somewhere in each row? How many clauses are required to express
this in CNF?
For each number, x and each row, j we must express the fact that x occurs
in some column i. This can be done with a single clause for each of the 81
possible combinations of x and j.

(P1,j,x ∨ P2,j,x ∨ . . . ∨ P8,j,x ∨ P9,j,x) (9× 9 clauses)

(d) How would you express the constraint that a solution must place every
number somewhere in each column? How many clauses are required to
express this in CNF?
This can be done with a single clause for each of the 81 possible combina-
tions of x and i.(

Pi,1,x ∨ Pi,2,x ∨ . . . Pi,8,x ∨ Pi,9,x

)
(9× 9 clauses)

(e) How would you express the constraint that a solution can must place every
number somewhere in each 3×3 subsquare? How many clauses are required
to express this in CNF?
For each of the 9 sub squares, we need 9 clauses (one for each x) similar to
the following (which gives the 9 clauses for the middle-right sub square),P7,4,x ∨ P8,4,x ∨ P9,4,x

P7,5,x ∨ P8,5,x ∨ P9,5,x

P7,6,x ∨ P8,6,x ∨ P9,6,x

 (9 clauses for each sub square)

So, 9× 9 clauses for this constraint.

For some problems, it may be hard to find a solution, but it is straightforward to
check whether an answer is correct. Sudoku is an example: it is straightforward
to check the correctness of a putative solution, but it can be hard to find a
solution. All such (easy-to-check but hard-to find) search problems could be
solved, in principle, by exhaustive search, but a ’combinatorial explosion’ often
makes this impractical.

We have encoded the Sudoku problem as an instance of the Boolean satisfiabil-
ity problem (SAT). With a suitable technical definition of ’straightforward to
check’, it can be proved that every such problem can be reduced to SAT.

3



2. This question concerns the 256 possible truth valuations of the following eight
propositional letters A,B,C,D,E, F,G,H. For each of the following expres-
sions, say how many of the 256 valuations satisfy the expression, and briefly
explain your reasoning. For example, the expression D is satisfied by half of the
valuations, that is 128 of the 256, since for each valuation that makes D true
there is a matching valuation that make D false.

(a) A ∧B 64

(b) (A ∨B) ∧ C 96

(c) (A→ B)→ C 160

(d)

(A→ B)∧(B → A)∧(C → D)∧(D → E)∧(E → F )∧(F → G)∧(G→ H)

14

(e)

(A→ B) ∧ (B → A) ∧ (C → D) ∧ (D → C)

∧ (E → F ) ∧ (F → G) ∧ (G→ H)

20

(f)

(H → A)∧(A→ B∧C)∧(B∨C → D)∧(A→ E)∧(E → F )∧(F → G)∧(G→ H)

6

3. This question concerns the resolution of the claim that

P → (Q ∨R), Q→ ¬S, S ∨R,R→ Q, (Q ∧R)→ S ` P → S

(a) Express each of the assumptions, and the negation of the conclusion, in
clausal form.

i. P → (Q ∨R)
¬P ∨ (Q ∨R) by arrow elimination
¬P ∨Q ∨R by associativity
{¬P,Q,R}

ii. Q→ ¬S
¬Q ∨ ¬S by arrow elim
{¬Q,¬S}

iii. S ∨R
{S,R}

iv. R→ Q
¬R ∨Q by arrow elim
{¬R,Q}

4



v. (Q ∧R)→ S
¬(Q ∧R) ∨ S by arrow elim
(¬Q ∨ ¬R) ∨ S by De Morgan
¬Q ∨ ¬R ∨ S by associativity
{¬Q,¬R, S}

vi. ¬(P → S)
¬(¬P ∨ S) by arrow elim
¬¬P ∧ ¬S by De Morgan
P ∧ ¬S by double negation elimination
{P}, {¬S}

(b) Use resolution to determine whether the negation of the conclusion is con-
sistent with the conjunction of the assumptions.
The resolution pool is;

{¬P,Q,R}, {¬Q,¬S}, {S,R}, {¬R,Q}, {¬Q,¬R, S}, {P}, {¬S}

Note that resolving pairs of clauses does not eliminate them; it adds a new
clause to the pool; clauses may therefore be reused, and it is not necessary
to use all clauses. We can add the following clauses by resolution;

i. {Q,R} by resolving {¬P,Q,R} and {P} on P

ii. {¬Q,¬R} by resolving {¬Q,¬R, S} and {¬S} on S

iii. {S,¬Q} by resolving {¬Q,¬R} and {S,R} on R

iv. {¬Q} by resolving {¬Q,¬S} and {S,¬Q} on S

v. {R} by resolving {Q,R} and {¬Q} on Q

vi. {¬R} by resolving {¬R,Q} and {¬Q} on Q

vii. {} by resolving {¬R} and {R} on R

If there is a valuation making all of the assumptions true then this same
valuation will make each of the clauses introduced by resolution true. At
each resolution step, the valuation makes both assumptions true, so it
makes the conclusion true.

But no valuation can make both R and ¬R true; the conclusions at 3(b)v
and 3(b)vi contradict each other. We conclude that no valuation can make
all of the assumptions true.

Normally we take one more step: we apply resolution to the contradictory
clauses, to produce the empty clause. Since the empty clause is inconsis-
tent, the premises conjoined with the negation of the conclusion must also
be inconsistent.

(c) Is the original claim correct?
Yes.

5


