
Informatics 1
Computation and Logic

CNF via Boolean Algebra
Michael Fourman

1

B

R

A

G

x _ (y _ z) = (x _ y) _ z x ^ (y ^ z) = (x ^ y) ^ z associative

x _ (y ^ z) = (x _ y) ^ (x _ z) x ^ (y _ z) = (x ^ y) _ (x ^ z) distributive

x _ y = y _ x x ^ y = y ^ x commutative

x _ 0 = x x ^ 1 = x identity

x _ 1 = 1 x ^ 0 = 0 annihilation

x _ x = x x ^ x = x idempotent

x _ ¬x = 1 ¬x ^ x = 0 complements

x _ (x ^ y) = x x ^ (x _ y) = x absorbtion

¬(x _ y) = ¬x ^ ¬y ¬(x ^ y) = ¬x _ ¬y de Morgan

¬¬x = x x! y = ¬x ¬y

¬(a ! b) = a ^ ¬b a $ b = (a ! b) ^ (b ! a) a ! b = ¬a _ b

¬(a _ b) = ¬a ^ ¬b ¬(a ^ b) = ¬a _ ¬b
¬0 = 1 ¬¬a = a ¬1 = 0

a _ 1 = 1 a _ (b ^ c) = (a _ b) ^ (a _ c) a ^ 0 = 0

a _ 0 = a a _ ¬a = 1 a ^ ¬a = 0 a ^ 1 = a

2-SAT arrow rule

2

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

How many solutions are
there to his set of

constraints?

There are 32 states.
Must we check them all?

For a 2-SAT problem we can
use the arrow rule

3

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A

¬E

A → C

B → D

E → B

¬E → B

¬A → E

E → A

4

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

A → C

B → D

E → B

¬E → B

¬A → E

E → A

5

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

A → C

B → D

E → B

¬E → B

¬A → E

E → A

¬C → ¬A

¬D → ¬B

¬B → ¬E

¬B → E

¬E → A

¬A → ¬E

6

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

A satisfying valuation
draws a line between

false and true, such that

each atom is separated
from its negation, and

no arrow leads from true
to false.

7

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

There is at least one
satisfying valuation,

unless there is some
letter X with a cycle

including both X and ¬X.

If there is a path ¬X→X
then X must be true in

every satisfying valuation.

If there is a path X→¬X
then X must be false in

every satisfying valuation.

8

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

There is at least one
satisfying valuation,

unless there is some letter
X with cycle including

both X and ¬X.

If there is a path ¬X→X
then X must be true in

every satisfying valuation.

If there is a path X→¬X
then X must be false in

every satisfying valuation.

9

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

There is at least one
satisfying valuation,

unless there is some letter
X with cycle including

both X and ¬X.

If there is a path ¬X→X
then X must be true in

every satisfying valuation.

If there is a path X→¬X
then X must be false in

every satisfying valuation.

10

¬A ⋁ C

¬B ⋁ D

¬E ⋁ B

E ⋁ B

A ⋁ E

¬E ⋁ A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

There is at least one
satisfying valuation,

unless there is some letter
X with cycle including

both X and ¬X.

If there is a path ¬X→X
then X must be true in

every satisfying valuation.

If there is a path X→¬X
then X must be false in

every satisfying valuation.

Boolean Algebra
x _ (y _ z) = (x _ y) _ z x ^ (y ^ z) = (x ^ y) ^ z associative

x _ (y ^ z) = (x _ y) ^ (x _ z) x ^ (y _ z) = (x ^ y) _ (x ^ z) distributive

x _ y = y _ x x ^ y = y ^ x commutative

x _ 0 = x x ^ 1 = x identity

x _ 1 = 1 x ^ 0 = 0 annihilation

x _ x = x x ^ x = x idempotent

x _ ¬x = 1 ¬x ^ x = 0 complements

x _ (x ^ y) = x x ^ (x _ y) = x absorbtion

¬(x _ y) = ¬x ^ ¬y ¬(x ^ y) = ¬x _ ¬y de Morgan

¬¬x = x x! y = ¬x ¬y

11

Derived Operations
Definitions:

x! y ⌘ ¬x _ y implication

x y ⌘ x _ ¬y
x$ y ⌘ (¬x ^ ¬y) _ (x ^ y) equality (i↵)

x� y ⌘ (¬x ^ y) _ (x ^ ¬y) inequality (xor)

Some equations:

x$ y = (x! y) ^ (x y)

x� y = ¬(x$ y)

x� y = ¬x� ¬y
x$ y = ¬(x� y)

x$ y = ¬x$ ¬y
12

13

A ! B ^ C

A _B ! C

14

A ! B ^ C

= ¬A _ (B ^ C) (implication)

= (¬A _B) ^ (¬A _ C) (distributive)

= (A ! B) ^ (A ! C) (implication)

15

A ! B ^ C = (A ! B) ^ (A ! C)

A _B ! C = (A ! C) ^ (B ! C)

CNF via Boolean Algebra

16

expand implications:

¬(a ! b) = a ^ ¬b a $ b = (a ! b) ^ (b ! a) a ! b = ¬a _ b

push negations down:

¬(a _ b) = ¬a ^ ¬b ¬(a ^ b) = ¬a _ ¬b
¬0 = 1 ¬¬a = a ¬1 = 0

distribute disjunctions; absorb constants:

a _ 1 = 1 a _ (b ^ c) = (a _ b) ^ (a _ c) a ^ 0 = 0

a _ 0 = a a _ ¬a = 1 a ^ ¬a = 0 a ^ 1 = a

To produce conjunctive normal form
(CNF) 

eliminate ———  
push negations in  
push ⋁ inside ⋀

9

¬(a ! b) = a ^ ¬b a $ b = (a ! b) ^ (b ! a) a ! b = ¬a _ b

¬(a _ b) = ¬a ^ ¬b ¬(a _ b) = ¬a ^ ¬b
¬0 = 1 ¬¬a = a ¬1 = 0

a _ 1 = 1 a _ (b ^ c) = (a _ b) ^ (a _ c) a ^ 0 = 0

a _ 0 = a a _ ¬a = 1 a ^ ¬a = 0 a ^ 1 = a

$!
We can transform any Boolean
expression algebraically to
create an equivalent CNF

10

R $ A = (R ! A) ^ (A ! R)

= (¬R _A) ^ (¬A _R)

G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

eliminate $!
In this case, once we have
eliminated implications, we
have CNF.
Clauses with only two literals
correspond to implications.

eliminate

11

R $ A = (R ! A) ^ (A ! R)

= (¬R _A) ^ (¬A _R)

G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

$!
Here, we use the previous
result to re-write the part in
parentheses.

push negations in

12

G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
(¬(¬R _A) _ ¬(¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�

push negations in

13

G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
(¬(¬R _A) _ ¬(¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�

push ⋁ inside ⋀

14

G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�

=
�
((¬G _ ¬R _A) ^ (¬G _ ¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�

push ⋁ inside ⋀

15

G $ (R $ A)

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _A) ^ (R _ ¬R) ^ (¬A _ ¬R)) _G

�

simplify

16

G $ (R $ A)

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _A) ^ (R _ ¬R) ^ (¬A _ ¬R)) _G

�

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _ ¬R)) _G

�

¬A _A = >
R _ ¬R = >
x ^ > = x

push ⋁ inside ⋀

17

G $ (R $ A)

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _ ¬R)) _G

�

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
(R _A _G) ^ (¬A _ ¬R _G)

check!

18

✔

✔

✔

✔

!

!

!
!

G $ (R $ A) =

(¬G _ ¬R _A)

^
(¬G _ ¬A _R)

^
(R _A _G)

^
(¬A _ ¬R _G)

4-SAT ➥ 3-SAT
with an extra atom – and 3 extra clauses

replace A ∨ B ∨ C ∨ D by (A ∨ B ∨ L) ∧ (L ↔ C ∨ D)

L ↔ C ∨ D
= (L → C ∨ D) ∧ (C ∨ D → L)
= (¬L ∨ C ∨ D) ∧ (¬(C ∨ D) ∨ L)
= (¬L ∨ C ∨ D) ∧ ((¬C ∧ ¬D) ∨ L)
= (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)

A ∨ B ∨ C ∨ D ≣

(A ∨ B ∨ L) ∧ (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)

4-SAT ➥ 3-SAT
with an extra atom – and 3 extra clauses

1: A ∨ B ∨ C ∨ D ≣
2: (A ∨ B ∨ L) ∧ (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)

• Any state of ABCD in which (1) is true  
can be extended uniquely to a state in which (2) is true  
- just give L the value of C ∨ D

• Any state of ABCDL in which (2) is true  
also makes (1) true

Satisfying a set of constraints including (1)
is equivalent to

satisfying the set given by replacing (1) by (2)

n-SAT ➥ 3-SAT
with extra atoms – and extra clauses

1: A ∨ B ∨ C ∨ D ≣
2: (A ∨ B ∨ L) ∧ (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)

• We can use the same trick to reduce any  
(n+1)-SAT set of constraints to n-SAT  
(where n > 2)

If we can solve 3-SAT we can solve n-SAT

A

A

30

A B

31

A ∧ B

A

B

32

A ∨ B

A

B

33

C D

A

B

34

C D

(B ⋁ (A ⋀ C)) ⋀ D

A

B

35

C

D

A

B

36

C

D

(A ∧ C) ∨ (B ∧ D) ∨ (B ∧ C) ∨ (A ∧ D)

 = (A ∨ B) ∧ (C ∨D)

37

A

C

B

C

(A ∨ C) ⋀ (B ∨ C)

 = (A ⋀ B) ⋁ C

A B

C

38

B

A
C

(A ∨ B) ⋀ C

 = (A ⋀ C) ⋁ (B ⋀ C)

B C

A C

The diagram shows a river, a road, an
island, and two bridges that can open to
let ships pass.
Ships can pass from West to East only if at
least one of the bridges is open.
Cars can pass from North to South only if
both bridges are closed.

N

S

W E

How does this relate to
de Morgan’s Law?

Draw a graph showing
the paths across the
bridges from
North to South.

N

S

In each case, the bridges
correspond to edges of

the graph.

Draw a graph showing
the paths under the

bridges from West to
East.

What is the logical
relationship between the

two graphs?

E
W

