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x _ (y _ z) = (x _ y) _ z x ^ (y ^ z) = (x ^ y) ^ z associative

x _ (y ^ z) = (x _ y) ^ (x _ z) x ^ (y _ z) = (x ^ y) _ (x ^ z) distributive

x _ y = y _ x x ^ y = y ^ x commutative

x _ 0 = x x ^ 1 = x identity

x _ 1 = 1 x ^ 0 = 0 annihilation

x _ x = x x ^ x = x idempotent

x _ ¬x = 1 ¬x ^ x = 0 complements

x _ (x ^ y) = x x ^ (x _ y) = x absorbtion

¬(x _ y) = ¬x ^ ¬y ¬(x ^ y) = ¬x _ ¬y de Morgan

¬¬x = x x! y = ¬x ¬y

¬(a ! b) = a ^ ¬b a $ b = (a ! b) ^ (b ! a) a ! b = ¬a _ b

¬(a _ b) = ¬a ^ ¬b ¬(a ^ b) = ¬a _ ¬b
¬0 = 1 ¬¬a = a ¬1 = 0

a _ 1 = 1 a _ (b ^ c) = (a _ b) ^ (a _ c) a ^ 0 = 0

a _ 0 = a a _ ¬a = 1 a ^ ¬a = 0 a ^ 1 = a



2-SAT arrow rule
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

How many solutions are 
there to his set of 

constraints? 

There are 32 states. 
Must we check them all? 

For a 2-SAT problem we can 
use the arrow rule
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A

¬E

A →  C

B →  D

E →  B

¬E →  B

¬A →  E

E →  A
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

A →  C

B →  D

E →  B

¬E →  B

¬A →  E

E →  A
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

A →  C

B →  D

E →  B

¬E →  B

¬A →  E

E →  A

¬C → ¬A 

¬D → ¬B

¬B → ¬E

¬B →  E

¬E →  A

¬A → ¬E
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

A satisfying valuation 
draws a line between 

false and true, such that  

each atom is separated 
from its negation, and  

no arrow leads from true 
to false.
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

There is at least one 
satisfying valuation, 

unless there is some 
letter X with a cycle 

including both X and ¬X. 

If there is a path ¬X→X 
then X must be true in 

every satisfying valuation. 

If there is a path X→¬X 
then X must be false in 

every satisfying valuation.
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¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

There is at least one 
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unless there is some letter 
X with cycle including 

both X and ¬X. 

If there is a path ¬X→X 
then X must be true in 

every satisfying valuation. 

If there is a path X→¬X 
then X must be false in 

every satisfying valuation.
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A ¬B

¬C ¬D

¬E
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⊤

⊥

There is at least one 
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every satisfying valuation.
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¬A ⋁  C

¬B ⋁  D

¬E ⋁  B

E ⋁  B

A ⋁  E

¬E ⋁  A

AB

CD

E

¬A ¬B

¬C ¬D

¬E

How many satisfying valuations?
⊤

⊥

There is at least one 
satisfying valuation, 

unless there is some letter 
X with cycle including 

both X and ¬X. 

If there is a path ¬X→X 
then X must be true in 

every satisfying valuation. 

If there is a path X→¬X 
then X must be false in 

every satisfying valuation.



Boolean Algebra
x _ (y _ z) = (x _ y) _ z x ^ (y ^ z) = (x ^ y) ^ z associative

x _ (y ^ z) = (x _ y) ^ (x _ z) x ^ (y _ z) = (x ^ y) _ (x ^ z) distributive

x _ y = y _ x x ^ y = y ^ x commutative

x _ 0 = x x ^ 1 = x identity

x _ 1 = 1 x ^ 0 = 0 annihilation

x _ x = x x ^ x = x idempotent

x _ ¬x = 1 ¬x ^ x = 0 complements

x _ (x ^ y) = x x ^ (x _ y) = x absorbtion

¬(x _ y) = ¬x ^ ¬y ¬(x ^ y) = ¬x _ ¬y de Morgan

¬¬x = x x! y = ¬x ¬y
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Derived Operations
Definitions:

x! y ⌘ ¬x _ y implication

x y ⌘ x _ ¬y
x$ y ⌘ (¬x ^ ¬y) _ (x ^ y) equality (i↵)

x� y ⌘ (¬x ^ y) _ (x ^ ¬y) inequality (xor)

Some equations:

x$ y = (x! y) ^ (x y)

x� y = ¬(x$ y)

x� y = ¬x� ¬y
x$ y = ¬(x� y)

x$ y = ¬x$ ¬y
12
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A ! B ^ C

A _B ! C
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A ! B ^ C

= ¬A _ (B ^ C) (implication)

= (¬A _B) ^ (¬A _ C) (distributive)

= (A ! B) ^ (A ! C) (implication)
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A ! B ^ C = (A ! B) ^ (A ! C)

A _B ! C = (A ! C) ^ (B ! C)



CNF via Boolean Algebra

16

expand implications:

¬(a ! b) = a ^ ¬b a $ b = (a ! b) ^ (b ! a) a ! b = ¬a _ b

push negations down:

¬(a _ b) = ¬a ^ ¬b ¬(a ^ b) = ¬a _ ¬b
¬0 = 1 ¬¬a = a ¬1 = 0

distribute disjunctions; absorb constants:

a _ 1 = 1 a _ (b ^ c) = (a _ b) ^ (a _ c) a ^ 0 = 0

a _ 0 = a a _ ¬a = 1 a ^ ¬a = 0 a ^ 1 = a



To produce conjunctive normal form 
(CNF) 

eliminate ———  
push negations in  
push ⋁ inside ⋀
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¬(a ! b) = a ^ ¬b a $ b = (a ! b) ^ (b ! a) a ! b = ¬a _ b

¬(a _ b) = ¬a ^ ¬b ¬(a _ b) = ¬a ^ ¬b
¬0 = 1 ¬¬a = a ¬1 = 0

a _ 1 = 1 a _ (b ^ c) = (a _ b) ^ (a _ c) a ^ 0 = 0

a _ 0 = a a _ ¬a = 1 a ^ ¬a = 0 a ^ 1 = a

$ !
We can transform any Boolean 
expression algebraically to 
create an equivalent CNF
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R $ A = (R ! A) ^ (A ! R)

= (¬R _A) ^ (¬A _R)

G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

eliminate  $ !
In this case, once we have 
eliminated implications, we 
have CNF. 
Clauses with only two literals 
correspond to implications.



eliminate
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R $ A = (R ! A) ^ (A ! R)

= (¬R _A) ^ (¬A _R)

G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

$ !
Here, we use the previous 
result to re-write the part in 
parentheses.



push negations in
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G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
(¬(¬R _A) _ ¬(¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�



push negations in
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G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
¬((¬R _A) ^ (¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
(¬(¬R _A) _ ¬(¬A _R)) _G

�

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�



push ⋁ inside ⋀
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G $ (R $ A)

=
�
¬G _ ((¬R _A) ^ (¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�

=
�
((¬G _ ¬R _A) ^ (¬G _ ¬A _R))

�

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�



push ⋁ inside ⋀
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G $ (R $ A)

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R ^ ¬A) _ (A ^ ¬R)) _G

�

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _A) ^ (R _ ¬R) ^ (¬A _ ¬R)) _G

�



simplify
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G $ (R $ A)

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _A) ^ (R _ ¬R) ^ (¬A _ ¬R)) _G

�

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _ ¬R)) _G

�

¬A _A = >
R _ ¬R = >
x ^ > = x



push ⋁ inside ⋀
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G $ (R $ A)

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
�
((R _A) ^ (¬A _ ¬R)) _G

�

= (¬G _ ¬R _A) ^ (¬G _ ¬A _R)

^
(R _A _G) ^ (¬A _ ¬R _G)



check!
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✔

✔

✔

✔

!

!

!
!

G $ (R $ A) =

(¬G _ ¬R _A)

^
(¬G _ ¬A _R)

^
(R _A _G)

^
(¬A _ ¬R _G)



4-SAT ➥ 3-SAT 
with an extra atom – and 3 extra clauses

replace A ∨ B ∨ C ∨ D by (A ∨ B ∨ L) ∧ (L ↔ C ∨ D)

L ↔ C ∨ D 
= (L → C ∨ D) ∧ (C ∨ D  → L)
= (¬L ∨ C ∨ D) ∧ (¬(C ∨ D)  ∨ L)
= (¬L ∨ C ∨ D) ∧ ((¬C ∧ ¬D)  ∨ L)
= (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)

A ∨ B ∨ C ∨ D ≣

(A ∨ B ∨ L) ∧ (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)



4-SAT ➥ 3-SAT 
with an extra atom – and 3 extra clauses

1:       A ∨ B ∨ C ∨ D ≣ 
2:       (A ∨ B ∨ L) ∧ (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)

• Any state of ABCD in which (1) is true  
can be extended uniquely to a state in which (2) is true  
- just give L the value of C ∨ D 

• Any state of ABCDL in which (2) is true  
also makes (1) true 

Satisfying a set of constraints including (1) 
is equivalent to

satisfying the set given by replacing (1) by (2)



n-SAT ➥ 3-SAT 
with extra atoms – and extra clauses

1:       A ∨ B ∨ C ∨ D ≣ 
2:       (A ∨ B ∨ L) ∧ (¬L ∨ C ∨ D) ∧ (¬C ∨ L) ∧ (¬D ∨ L)

• We can use the same trick to reduce any  
(n+1)-SAT set of constraints to n-SAT  
(where n > 2) 

If we can solve 3-SAT we can solve n-SAT
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A B
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A ∧ B



A

B
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A ∨ B



A

B
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C D



A

B

34

C D

(B ⋁ (A ⋀ C)) ⋀ D



A

B
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C

D



A

B
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C

D

(A ∧ C) ∨ (B ∧ D) ∨ (B ∧ C) ∨ (A ∧ D) 

 = (A ∨ B) ∧ (C ∨D)
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A

C

B

C

(A ∨ C) ⋀ (B ∨ C) 

 = (A ⋀ B) ⋁ C

A B

C
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B

A
C

(A ∨ B) ⋀ C 

 = (A ⋀ C) ⋁ (B ⋀ C)

B C

A C



The diagram shows a river, a road, an 
island, and two bridges that can open to 
let ships pass. 
Ships can pass from West to East  only if at 
least one of the bridges is open. 
Cars can pass from North to South only if 
both bridges are closed.

N

S

W E

How does this relate to 
de Morgan’s Law?



Draw a graph showing  
the paths across the 
bridges from  
North to South.

N

S

In each case, the bridges 
correspond to edges of 

the graph.

Draw a graph showing  
the paths under the 

bridges from West to 
East.

What is the logical 
relationship between the 

two graphs?

E
W


