
cl
Informatics 1
School of Informatics, University of Edinburgh

Regular Languages

• The language accepted by a state

• Arden’s Lemma

• NFA - DFA

1

2

0 1
a

alb
1

0 1
a

alb

2

b
2

c

0 1
a

alb
1 2

b

c

0 1
a

1 2

b

cd

(a|b)*a

(a|b)*ab(cb)*

(a|b)*a(bc)*

a(a|b)*

a(da|bc)*

0 a

alb

11

Informatics 1
School of Informatics, University of Edinburgh

rules for regular languages

3

The following equations hold for any sets of strings R,S,T
• {} | S =
• {} S =
• ε S =
• ε* =
• {}* =
• R (S | T) =
• S R | T R =
• S* S | ε =

Informatics 1
School of Informatics, University of Edinburgh

rules for regular languages

4

The following equations hold for any sets of strings R,S,T
• {} | S = {}|S = S
• {} S = S {} = {}
• ε S = S ε = S
• ε* = ε
• {}* = {}
• R (S | T) = R S | R T
• (S | T) R = S R | T R
• S* = S* S | ε = S S* | ε

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

5

0 1

a b

2

c

Let Li be the language
accepted if i is the
accepting state

L0 = ε
L1 = L0 a
L2 = L1 b | L0 c

L2 = L0 a b | ε c
L2 = ε a b | ε c
L2 = a b | c

0 1

a b

2

c

0 1

a b

2

c

L0

L1

L2

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

6

0 1

a b

2

c
L1 =

0 1

a b

2

c

0 1

a b

2

c

L0 = ε

L2 =

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

7

0 1

a b

2

c
?

0

1a b
2

c

0 1

a b

2

c

?

?
d

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

8

0 1

a b

2

c
a(bc)*

0

1a b
2

c

0 1

a b

2

c

ab(cab)*

ab(cb | d)*
d

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

9

0 1

a b

2

c
L1 = L0 a | L2 c

0 1

a b

2

c

0 1

a b

2

c

L0 = ε

L2 = L1 b

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

10

0 1

a b

2

c

L1 = L0 a | L2 c
 = a | L1 bc

0 1

a b

2

c

0 1

a b

2

c

L0 = ε

L2 = L1 b

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

11

0 1

a b

2

c

L1 = L0 a | L2 c
 = a | L1 bc
L1 = a(bc)*

0 1

a b

2

c

0 1

a b

2

c

L0 = ε

L2 = L1 b

Informatics 1
School of Informatics, University of Edinburgh

Arden’s Lemma

12

If R and S are
regular expressions
then the equation
X = R | X S
has a solution X = R S*
If ε ∉ L(S) then this solution is unique.

X
R

S

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

13

L1 = L2 b
L2 = L3 b | L1 a
L3 = ε | L1 b

2

3

1 b

b

a

b

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

14

L1 = L2 b
L2 = L3 b | L1 a
L3 = ε | L1 b

2

3

1 b

b

a

b

= ε | L2 b b
L2 = (ε | L2 b b) b | L2 b a

= b | L2 b b b | L2 b a
= b | L2 (b b b | b a)

Informatics 1
School of Informatics, University of Edinburgh

Arden’s Lemma

15

If R and S are regular expressions
then the equation

X = R | X S
has a solution X = R S*

If ε ∉ L(S) then this solution is unique.
L2 = b | L2 (b b b | b a)
L2 = b (b b b | b a)*

Language
Σ: a finite alphabet

A language L is a set of finite strings

L ⊆ Σ*

where the strings in Σ* are of
finite sequences of tokens from Σ

the string < x0, …, xn-1 > has length n
strings include the empty string

ε = <> of length 0

Finite Automata
finite alphabet a, b ∈ Σ ; Σ+ = Σ ∪ {ε}

finite set of states Α, Β ∈ Q
start states S ⊆ Q and final states F ⊆ Q

labelled transitions A⟶B ∈ δ ⊆ Q × Σ+ × Qa

A trace q0 ⟿ qn for s ∈ Σ* in M is a
sequence < q0, …, qn > ∈ Q* of states

such that
qi ⟶ qi+1 ∈ δ, for each i < n,

and s is the concatenation of the xi (with ε = "")

q0 qn

x0
xn-1

xi

s

Finite Automaton, M
finite alphabet a, b ∈ Σ ; Σ+ = Σ ∪ {ε}

finite set of states Α, Β ∈ Q
start states S ⊆ Q and final states F ⊆ Q

labelled transitions A→B ∈ Q × Σ ∪ {ε} × Qa

The language accepted by M is the set of strings s for which

there is a trace q0 ⟿ qn

such that

for some q0 ∈ S and qn ∈ A
q0 qn

x0
xn-1

s

Finite Automata
finite alphabet a, b ∈ Σ ; Σ+ = Σ ∪ {ε}

finite set of states Α, Β ∈ Q
start states S ⊆ Q and final states F ⊆ Q

labelled transitions A→B ∈ Q × Σ ∪ {ε} × Q

DFA
• a single start state

• exactly one a-labelled
transition from each state for
each symbol a ∈ Σ

• no ε-transitions.

NFA
• no restrictions

a

Are there any languages
recognised by some NFA,  

but by no DFA?

1

10,1

0

Try a simple example
binary strings
that end in 1

Each state X lights up when we’ve seen a string
with a trace from some start set to X

ε 0 1
10,1

1

0 0 1
10,1

1

1 0 1
10,1

1

10 0 1
10,1

1

01 0 1
10,1

1

11 0 1
10,1

1

0 1

10,1

1

Each state X lights up when we’ve seen  
a string with a trace from some start set to X

ε 0 1
10,1

1

0 0 1
10,1

1

1 0 1
10,1

1

10 0 1
10,1

1

01 0 1
10,1

1

11 0 1
10,1

1

1
1

0

0

NFA

DFA
The states of the DFA

are sets of
states of the NFA.

subset construction

0 1

10,1

1

Each state X lights up when we’ve seen  
a string with a trace from some start set to X

1
1

0

0

NFA

DFA
The states of the DFA M

are sets of
states of the NFA P(M).

subset construction
The start state of P(M) is the set of start states of M.

X ⊆ M is an accepting state of P(M)
iff there is an accepting state A of M with A∈ X

In general not all subsets of M
are reachable from the start state

we can ignore those any are not reachable.

In this example, we have no ε-transitions.

The start state of P(M) is the set S of start states of M.

For any reachable X ⊆ M, for each a ∈ Σ,
the a-labelled transition from X leads to

the set Y of states reachable in M
from a state X in X by an a-transition.

X

Y= { Y | for some X∈ X, X→ Y}a

X → Y in P(M)
and Y is reachable.

a

q

ε

ar
b

What if we do have an ε-transition?

s

We have two traces for “a”.

r ⟶ q and r ⟶ q ⟶ sa a ε

M a b ε
r q
q s
s q

transition table

P(M) a b

{r} {q,s} {}

{q,s} {} {q,s}

{q,s}
a

{r}

b

{}b a

What if we do have some ε-transitions?
The start state of P(M) is the set of states t such that

s ⟿ t where s ∈ S is a start state of M.

For any reachable X ⊆ M, for each a ∈ Σ,
the a-labelled transition from X leads to

the set Y of states reachable in M
from a state X in X by an a-trace.

X

Y= { Y | for some X∈ X, X ⟿ Y}
a

X → Y in P(M)
and Y is reachable.

a

ε

32

1
0

0 1

1

A machine with at most one transition
with a given label from a given state

This machine is not a DFA
but it is equivalent to a DFA

number of 1’s is
one larger than
number of 0’s

number of 0’s is
one larger than
number of 1’s

number of 1’s and
number of 0’s
are the same

What is the DFA
given by the subset construction?

{3}

{}

{2}

{1}
0

0

0

01

1

1

1

32

1
0

0 1

1

Are these two machines equivalent?

The subset construction adds
each singleton,

plus the empty set
which acts as a new

black-hole state,  
which is not an accepting state
any missing transitions go there.

{3}

{}

{2}

{1}
0

0

0

01

1

1

1

32

1
0

0 1

1

Are these two machines equivalent?

Yes
If there is a path from
the start state to an

accepting state then
it only uses states  

1, 2, 3

The two machines accept the same strings

32

1
0

0 1

1

A machine with
at most one transition

with a given label from a given state

If a machine has at most one transition
with a given label from any state

then it has at most one trace for any input string

The equivalent DFA produced by the subset construction  
has one new state, a black-hole state,  

which is not an accepting state.
All missing transitions go there.

Informatics 1
School of Informatics, University of Edinburgh

30

Deterministic FSMs

Many authors give an informal definition of
deterministic

• each state has at most one transition leaving the
state for each input symbol.

Formal definition says, exactly one state …
• We consider the informal presentation to include an

implicit “black hole”, or “sink” state, from which
there is no escape.

• Where there is no explicit transition for a symbol, it
takes us to the black hole.

Informatics 1
School of Informatics, University of Edinburgh

Determinism

• Proof
Add a new “black hole” state, ●
For every pair (q, s) for which there is no state r with a transition
T(q, s, r), add a transition T(q, s, ●).
This includes a transition T(●, a, ●) for each a ∈ Σ . You cannot
escape from the black hole.
The black hole ● is not an accepting state.

This machine accepts the same language as the original.

31

For the new
machine there is

exactly one trace for
each input string

If we have a machine with at most one
transition for each (q,s) pair, we can always
convert to an equivalent DFA for which
every state has exactly one transition
leaving the state for each input symbol.

NFA are easy to define and easy to combine.
DFA are easy to implement

r

searching for cucumber
u mm bc u c e rebuu cc

. .

s0 [] = True

s0 ('0':xs) = s0 xs

s0 ('1':xs) = s1 xs

s0 ('2':xs) = s2 xs

s1 [] = False

s1 ('0':xs) = s3 xs

s1 ('1':xs) = s0 xs

s1 ('2':xs) = s1 xs

s2 [] = False

s2 ('0':xs) = s2 xs

s2 ('1':xs) = s3 xs

s2 ('2':xs) = s0 xs

s3 [] = False

s3 ('0':xs) = s1 xs

s3 ('1':xs) = s2 xs

s3 ('2':xs) = s3 xs

