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Regular Languages

• The language accepted by a state

• Arden’s Lemma

• NFA - DFA
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rules for regular languages
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The following equations hold for any sets of strings R,S,T
• {} | S =
• {} S =
• ε S =
• ε* =
• {}* = 
• R (S | T)  =
• S R | T R =
• S* S | ε =



Informatics 1 
School of Informatics, University of Edinburgh

rules for regular languages
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The following equations hold for any sets of strings R,S,T
• {} | S =  {}|S = S
• {} S = S {} = {}
• ε S = S ε = S
• ε* = ε
• {}* = {}
• R (S | T)  = R S | R T
• (S | T) R = S R | T R
• S* = S* S | ε = S S* | ε
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Is there a regular expression for every 
FSM?
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Let Li be the language 
accepted if i is the 
accepting state 

L0 = ε
L1 = L0 a
L2 = L1 b | L0 c

L2 = L0 a b | ε c
L2 = ε a b | ε c
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Is there a regular expression for every 
FSM?
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L1 = L0 a | L2 c
    = a | L1 bc
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Arden’s Lemma
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If R and S are  
regular expressions 
then the equation 
X = R | X S 
has a solution X = R S* 
If ε ∉ L(S) then this solution is unique. 

X
R

S
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Is there a regular expression for every 
FSM?
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L1 = L2 b
L2 = L3 b | L1 a
L3 = ε | L1 b
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Is there a regular expression for every 
FSM?
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L1 = L2 b
L2 = L3 b | L1 a
L3 = ε | L1 b

2

3

1 b
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= ε | L2 b b
L2 = (ε | L2 b b) b | L2 b a

= b | L2 b b b | L2 b a
= b | L2 (b b b | b a)
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Arden’s Lemma
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If R and S are regular expressions 
then the equation 

X = R | X S 
has a solution X = R S* 

If ε ∉ L(S) then this solution is unique. 
L2 = b | L2 (b b b | b a)
L2 = b (b b b | b a)*



Language
Σ: a finite alphabet 

A language L is a set of finite strings 

L ⊆ Σ* 

where the strings in Σ* are of  
finite sequences of tokens from Σ 

the string < x0, …, xn-1 > has length n 
strings include the empty string  

ε = <> of length 0



Finite Automata 
finite alphabet a, b ∈ Σ ; Σ+ = Σ ∪ {ε} 

finite set of states Α, Β ∈ Q 
start states S ⊆ Q and final states F ⊆ Q 

labelled transitions A⟶B ∈ δ ⊆ Q × Σ+ × Qa

A trace q0 ⟿ qn for s ∈ Σ* in M is a  
sequence < q0, …, qn > ∈ Q* of states 

such that 
qi ⟶ qi+1 ∈ δ, for each i < n,  

and s is the concatenation of the xi (with ε = "") 

q0 qn

x0
xn-1

xi 

s



Finite Automaton, M 
finite alphabet a, b ∈ Σ ; Σ+ = Σ ∪ {ε} 

finite set of states Α, Β ∈ Q 
start states S ⊆ Q and final states F ⊆ Q 

labelled transitions A→B ∈ Q × Σ ∪ {ε} × Qa

The language accepted by M is the set of strings s for which 

there is a trace q0 ⟿ qn  

such that 

for some q0 ∈ S and qn ∈ A
q0 qn

x0
xn-1

s



Finite Automata 
finite alphabet a, b ∈ Σ ; Σ+ = Σ ∪ {ε} 

finite set of states Α, Β ∈ Q 
start states S ⊆ Q and final states F ⊆ Q 

labelled transitions A→B ∈ Q × Σ ∪ {ε} × Q

DFA 
• a single start state 

• exactly one a-labelled 
transition from each state for 
each symbol a ∈ Σ 

• no ε-transitions.

NFA 
• no restrictions

a

Are there any languages 
recognised by some NFA,  

but by no DFA?
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Try a simple example 
binary strings  
that end in 1

Each state X lights up when we’ve seen a string  
with a trace from some start set to X
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10,1

1

Each state X lights up when we’ve seen  
a string with a trace from some start set to X
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NFA

DFA
The states of the DFA 

are sets of  
states of the NFA. 

subset construction



0 1

10,1

1

Each state X lights up when we’ve seen  
a string with a trace from some start set to X

1
1

0

0

NFA

DFA
The states of the DFA  M 

are sets of  
states of the NFA  P(M). 

subset construction
The start state of P(M)  is the set of start states of M. 

X ⊆ M is an accepting state of P(M)  
iff there is an accepting state A of M with A∈ X

In general not all subsets of M  
are reachable from the start state 

we can ignore those any are not reachable.



In this example, we have no ε-transitions. 

The start state of P(M)  is the set S of start states of M. 

For any reachable X ⊆ M, for each a ∈ Σ, 
the a-labelled transition from X leads to 

the set Y of states reachable in M  
from a state X in X by an a-transition.

X

Y= { Y | for some X∈ X, X→ Y}a

X → Y in  P(M)
and Y is reachable.

a
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What if we do have an ε-transition?

s

We have two traces for “a”. 

r ⟶ q  and r ⟶ q ⟶ sa a ε

M a b ε
r q
q s
s q

transition table

P(M) a b

{r} {q,s} {}

{q,s} {} {q,s}

{q,s}
a

{r}

b

{}b a



What if we do have some ε-transitions? 
The start state of P(M)  is the set of states t such that  

s ⟿ t where s ∈ S is a start state of M. 

For any reachable X ⊆ M, for each a ∈ Σ, 
the a-labelled transition from X leads to 

the set Y of states reachable in M  
from a state X in X by an a-trace.

X

Y= { Y | for some X∈ X, X ⟿ Y}
a

X → Y in  P(M)
and Y is reachable.

a

ε
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A machine with at most one transition  
with a given label from a given state

This machine is not a DFA 
but it is equivalent to a DFA

number of 1’s is 
one larger than 
number of 0’s

number of 0’s is 
one larger than 
number of 1’s

number of 1’s and 
number of 0’s 
are the same

What is the DFA 
given by the subset construction?
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Are these two machines equivalent?

The subset construction adds 
each singleton,  

plus the empty set  
which acts as a new  

black-hole state,  
which is not an accepting state 
any missing transitions go there.
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Are these two machines equivalent?

Yes 
If there is a path from 
the start state to an 

accepting state then 
it only uses states  

1, 2, 3

The two machines accept the same strings
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A machine with  
at most one transition  

with a given label from a given state

If a machine has at most one transition  
with a given label from any state 

then it has at most one trace for any input string

The equivalent DFA produced by the subset construction  
has one new state, a black-hole state,  

which is not an accepting state. 
All missing transitions go there.
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Deterministic FSMs

Many authors give an informal definition of 
deterministic 

• each state has at most one transition leaving the 
state for each input symbol. 

Formal definition says, exactly one state … 
• We consider the informal presentation to include an 

implicit “black hole”, or “sink” state, from which 
there is no escape. 

• Where there is no explicit transition for a symbol, it 
takes us to the black hole.
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Determinism

• Proof 
Add a new “black hole” state, ● 
For every pair (q, s) for which there is no state r with a transition 
T(q, s, r), add a transition T(q, s, ●). 
This includes a transition T(●, a, ●) for each a ∈ Σ . You cannot 
escape from the black hole. 
The black hole ● is not an accepting state. 

This machine accepts the same language as the original.

31

For the new 
machine there is 

exactly one trace for 
each input string

If we have a machine with at most one 
transition for each (q,s) pair, we can always 
convert to an equivalent DFA for which 
every state has exactly one transition 
leaving the state for each input symbol.



NFA are easy to define and easy to combine. 
DFA are easy to implement

r

searching for cucumber
u mm bc u c e rebuu cc

. .

s0 [] = True

s0 ('0':xs) = s0 xs

s0 ('1':xs) = s1 xs

s0 ('2':xs) = s2 xs

s1 [] = False

s1 ('0':xs) = s3 xs

s1 ('1':xs) = s0 xs

s1 ('2':xs) = s1 xs

s2 [] = False

s2 ('0':xs) = s2 xs

s2 ('1':xs) = s3 xs

s2 ('2':xs) = s0 xs

s3 [] = False

s3 ('0':xs) = s1 xs

s3 ('1':xs) = s2 xs

s3 ('2':xs) = s3 xs


