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NFA and regex

• the Boolean algebra of languages

• regular expressions

1

https://app-ca.tophat.com/e/835603



KISS – DFA
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Deterministic Finite Automaton 

Exactly one start state, and  
from each state, q, 
 for each token, t,  

there is  
exactly one transition  

           from s with label t
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Two examples
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Input sequence is accepted if it ends with a zero.

0

1

1

10

0
Input sequence is accepted if it ends with a one.

Even 
binary 

numbers

Odd 
binary 

numbers

1

1 10

0

0

×2 ×2 + 1
0 1

0 0 1
1 0 1

×2 ×2 + 1
0 1

0 0 1
1 0 1
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The complement of a regular language 
is regular
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1

1 10

0

0 L0 : even numbers
= 0 mod 2

L1 : odd numbers
= 1 mod 20

1 10

0

0
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Three examples
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Which 
binary 
numbers 
are 
accepted?

1

1

1

0 0
0 2

1

0

0 1

1

1

0 0
1 2

1

0

0 1

1

1

0 0
2

1

0

2

×2 ×2 + 1
mod 3 0 1

0 0 1
1 2 0
2 1 2
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The complement of a regular language 
is regular
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If A ⊆ Σ* is 
recognised by M 
then A̅ = Σ* \ A 

is recognised by  
M̅ 

where M̅ and M are 
identical except that 
the accepting states 

of M̅ are the non-
accepting states of M 

and vice-versa

1

1

1

0 0
0 2

1

0

0 1

1

1

0 0
1 2

1

0
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By three or not by three?
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divisible by three1

1

1

0 0
0 2

1

0

0 1

1

1

0 0
1 2

1

0

not
divisible by three

2
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The intersection of two regular 
languages is regular
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1

1

1

0 0
0 2

1

0

L0 = 0 mod 3
L1 = 1 mod 3
L2 = 2 mod 3
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The intersection of two regular 
languages is regular
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divisible by 6 
≣ 

divisible by 2 
and  

divisible by 3
1

1

1

0 0
0 2

1

0

1

1 10

0

0
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The intersection of two regular 
languages is regular
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Run both machines in 
parallel? 

Build one machine 
that simulates two 

machines running in 
parallel! 

Keep track of the 
state of each 

machine.

1

1 10

0

0

1

1

1

0 0
0 2

1

0
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The intersection of two regular 
languages is regular
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1

1 10

0

0

1

1

1

0 0
2

1

0
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1

1 10

0

0

1

11

0
0

0
2

1

0

intersection of 
languages 

run the two machines in parallel 
when a string is in both languages, 

both are in an accepting state
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1

1 10

0

0

intersection of 
languages 

run the two machines in parallel 
when a string is in both languages, 

both are in an accepting state

1

11

0

0

0

2

1

0

10

20

100

11

21

01



intersection of two 
regular languages  

is regular

14

1

0

0

1

0

10

20

100

1
1

0

0

1

11

21

01

1

0
1

11

0

0

0

2

1

0

1

1 10

0

0

run two  
machines 

in 
synchrony 
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The regular languages A ⊆ Σ* form a 
Boolean Algebra

• Since they are closed under intersection 
and complement.
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Are all languages A ⊆ Σ*  regular?

• A finite machine can only do so much  
or rather, so little.

16

Consider the language with two symbols Σ = {0,1},  
consisting of the all strings  

that contain equal numbers of zeros and ones. 
How can we show that this language is not regular?

−1 01
0 1−4 −3 −2 2 3 41

0
1

0
1

0
1

0
1

0
1

0
1

0
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Are all languages A ⊆ Σ*  regular?

17

Consider the language with two symbols Σ = {0,1}, 
consisting of the all strings  

that contain equal numbers of zeros and ones. 

Suppose we have a DFA that recognises this language. 

Let sn be the state the machine reaches after an input 
of n zeros. 

If the machine is in state sn and we give it an input of n ones 
it will be in an accepting state. 
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Are all languages A ⊆ Σ*  regular?
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A = strings that contain equal numbers of zeros and ones. 

We have a DFA that recognises this language. 

sn is the state the machine after an input of n zeros. 

If the machine is in state sn and we give it an input of n ones 
it will be in an accepting state.  

If n ≠ m what can we say about sn and sm ?
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Are all languages A ⊆ Σ*  regular?
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A = strings that contain equal numbers of zeros and ones.  
We have a DFA that recognises this language. 

sn is the state the machine after an input of n zeros. 
If the machine is in state sn (after an input of n zeros),  

and we give it an input of m ones  
it will be in an accepting state iff m = n.  
Therefore, if n ≠ m then sn ≠ sm    (why?) 

So our machine must have infinitely many states!! 
An FSM with n states cannot count beyond n-1.
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Which languages A ⊆ Σ*  are regular?
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What kind of answer can we give to a question like this? 
If we have a machine  

then the language it recognises is regular. 
For some languages, L, e.g. our #0s = #1s example,  

we can argue that no FSM can recognise L. 
But that is not a general argument. 

Instead of finding a property,  
to characterise the regular languages,  
we will find a set of rules that generate 

 the set of regular languages.
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Which languages A ⊆ Σ*  are regular?
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We give a set of rules,  
and show that they generate all regular languages. 

First we work with general NFA to show that the rules are  
sound – any language generated by the rules is regular. 
Then we show that for any NFA, M, there is a DFA, P(M), 
that recognises the same language. So, any language 
generated by the rules is recognised by some DFA. 
Then we show that the rules are complete – any regular 
language is generated by the rules.



finite state spaghetti
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A natural language is a set of  
finite sequences of words. 

A formal language is a set of  
finite sequences of symbols. 

A formal language is regular iff  
it is the language recognised 
by some Finite State Machine.



Informatics 1 
School of Informatics, University of Edinburgh

KISS – start simple
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NFA any number of start states and accepting states
Any NFA with no accepting states, 
e.g. the NFA with no states,  
recognises the empty language ∅ = {}. 
The NFA with one state - starting and accepting,  
and no transitions           recognises the empty string {ε}.
The NFA with two states and one transition,  
start to stop                          recognises {"a"}a
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KISS – the basic regular languages
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The following languages are regular
• The empty language ∅ = {}

• The language that includes only the empty string {ε}.
• The language that includes only the one-letter string {"a"}



NFA any number of start 
states and accepting states

S

25

R



sequence 
RS

ε

26

SR

ε



alternation  R|S
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SR



iteration  R*

ε

28

R

ε
ε
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rules for regular languages
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The following languages are regular
• The empty language ∅ = {}
• The language that includes only the empty string {ε}.
• The language that includes only the one-letter string {"a"}

If R and S are regular so are
• R | S = R ∪ S
• RS = { rs | r ∈ R and s ∈ S }
• R* generated by rules 

• ε ∈ R*
• if x ∈ R* and r ∈ R then xr ∈ R*
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patterns for regular languages
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regular expressions for sets of strings
• ""  empty language ∅ = {}
• ε  empty string {ε}.
• a  one-letter string {"a"}
• R | S union R ∪ S
• RS concatenation { rs | r ∈ R and s ∈ S }
• R* iteration

precedence:        R|ST* = R|(S(T*))



A Decimal Number

d

d+⎮−    .

d d

d

ε

start end

startstartalternative paths repetition

skip

S
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((+|-)\d|\d)\d*(ε|.\d*\d)        where \d is (0|1|2|3|4|5|6|7|8|9) 
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0 1
a

alb
1

0 1
a

alb

2

b
2

c

0 1
a

alb
1 2

b

c

0 1
a

1 2

b

cd

0 a

alb

11
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0 1
a

alb
1

0 1
a

alb

2

b
2

c

0 1
a

alb
1 2

b

c

0 1
a

1 2

b

cd

(a|b)*a

(a|b)*ab(cb)*

(a|b)*a(bc)*

a(a|b)*

a(da|bc)*

0 a

alb

11
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rules for regular languages
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The following equations hold for any sets of strings R,S,T
• {} | S =
• {} S =
• ε S =
• ε* =
• {}* = 
• R (S | T)  =
• S R | T R =
• S* S | ε =
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rules for regular languages
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The following equations hold for any sets of strings R,S,T
• {} | S =  {}|S = S
• {} S = S {} = {}
• ε S = S ε = S
• ε* = ε
• {}* = {}
• R (S | T)  = R S | R T
• (S | T) R = S R | T R
• S* = S* S | ε = S S* | ε


