Informatics 1

Lecture 10 All Change

1
C\ O
00/1/ > 01/0
1

Present Next

State Input State Output 1

A B X A B X

00 0 00 0

00 1 01 0 v
01 0 00 1

01 1 11 0 0

10 0 00 1 10/0 11/0
10 1 10 0

11 0 00 1 A
11 1 10 0




AvCV-E

F
AVBVD DV
~AV-BVC -CVDVF
BV 2DV F
DV EV F
BV DV F
~BVDV-F -C'V DV F
BV -DV —F Make
C false
'V DV F D false
DV EVF E F can be chosen freely

make both true
-CV-DVF Make B false: A true



AvVvCV-E
AV BV D
-AV-BVC
BV DV -F
BV -DVF
BV DV AF
BY-DV-F
-CVDVF
DV EVF
-CV-DVF




(AVT)

(—AV A)

AV

AV
-AV-BVv(C
BV DV aF
BV -DVF
BV DV AF
BV -DV-aF
-CVDVEF
DV EVF
-CV-DVEF




AV

AV
-AvV-BVvVC
BV DV -F
—-BYV-DVF
BV DV -AF
BN =DV -aF
-C'VDVF
-DV EV F
-C'V DV F

vV-BvVvC

YN/, D/ [
\Y/ "1 J VvV U/




AAVCV -E
AAV BV D
A-Av-BvC
-BYV =DV —F
-BV =DV F
BV DV —F
BV -DV —F
-CVDVF
-DV EV F
-C'V-DVF

CV-EV-BVC



C

AAVCV-FE
AAV BV D
A-AvV-BVvVC
BV DV —F
-BvV-DVF
-BvV DV -F
BY DV —F
C~CVvDVF
-DV EV F
C-CvV-DVF

“Cv-EV-B

DV FV-EV-B
DV FV-EV-B



When does resolution stop?
What does a set of clauses look like when there are no
opportunities for resolution”

If we produce the empty clause {} by resolving {X} and {—-X}
then the constraints are not satistiable.

It resolution stops without producing the empty clause, then
every remaining literal is pure — its negation does not appeatr.

S0, we can construct a satistying valuation.
This shows that the resolution procedure is complete — if a set

of constraints is inconsistent we will produce the empty clause.
Otherwise we can produce a satisfying valuation.



To produce conjunctive normal form
(CNF)

eliminate < —>

push negations in
push Vv inside A










A farmer has to get a wolf, a goose, and a sack of corn across a river.
She has a boat, which can only carry her and one other thing.
If the wolf and the goose are left together, the wolf will eat the goose.

If the goose and the corn are left together, the goose will eat the corn.

How does she do it?
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We have a dozen propositions.
Each proposition may be true or false.
Each combination of truth values defines a state of the system.

18



These 12 propositions allow 4096 = 212 states.

Some of these are impossible - each thing can only be in one place at a time.
There only 81 possible states. How do we arrive at this number?

How can we use logic to specify the possible states?
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Some of the 81 possible states are not legal.
The farmer can only take one load in the boat.

How many of the possible states have at most the farmer and one load in the boat?

How can we use logic to specify the legal states?
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Some of the legal, possible states are not safe.
The farmer cannot safely leave the wolf with the goose or the goose with the corn.

How many of the legal, possible states are safe?

How can we use logic to specify the safe states?
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Once you have identified the safe, legal, possible states,
you can draw a diagram showing the possible transitions from one state to another.
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A farmer has to get a wolf, a goose, and a sack of corn across a river.
She has a boat, which can only carry her and one other thing.

If the wolf and the goose are left together, the wolf will eat the goose.

If the goose and the corn are left together, the chicken will eat the corn.
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A farmer has to get a wolf, a goose, and a sack of corn across a river. 7

How can we use logic to specify the transitions? o
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The jealous husbands and The missionaries and cannibals
IAN PRESSMAN aNp DAVID SINGMASTER

The classical river crossing problem of the jealous husbands involves three
couples who have to cross a river using a boat that holds just two people. The
jealousy of the husbands requires that no wife can be in the presence of
another man without her husband being present. This can be accomplished in
11 crossings (i.e. one-way trips). Tartaglia gave a sketchy solution for four
couples but Bachet pointed out that this was erroneous and that four couples
could not get across the river. In 1879, De Fontenay pointed out that four or
more couples could cross the river if there was an island in the river and gave a
solution for n couples in 87 — 8 crossings. Dudeney improved the solution for
n=4 and Ball noted that this gives 6n — 7 crossings for n couples.

From the results of a computer search, we have discovered solutions in 16
crossings for n =4 and in 4n + 1 crossings for n > 4 and we have proven that
these are the minimal number of crossings. We have also found that De
Fontenay's solution should be in 87 — 6 crossings and that this is the minimal
number of crossings when trips from bank to bank are prohibited.

The more recent missionaries and cannibals problem has » of each type of
person and the conditions are that the cannibals must never outnumber the
missionaries at any location. This is a proper weakening of the jealous
husbands problem. When bank-to-bank crossings are prohibited, De
Fontenay’s method already uses the least possible number of crossings, even
disregarding any conditions, hence is also optimal for this version of the
problem. When bank-to-bank crossings are permitted, the 16 crossing
solution for the jealous husbands can be reduced to 15 and this generates a
solution in 4n — | crossings, which is the minimal number of crossings for
nz3.
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How can we use
propositional logic to
model the jealous
husbands problem?

How many legal safe
states are there for this
problem?

Can we use propositional
logic to model the
missionaries and

cannibals problem?
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A River-Crossing Problem
in Cross-Cultural Perspective

MARCIA ASCHER

Ithaca College
Ithaca, NY 14850

1. Introduction Most mathematicians react with interest to the challenge of a
logical puzzle. In fact, some story puzzles have become such favorites that many of us
cannot even recall where we learned them. Perhaps one of the best known is the
puzzle in which a man must ferry across a river a wolf, a goat, and a head of cabbage.
The difficulty is that the available boat can only carry him and one other thing but
neither the wolf and goat nor goat and cabbage can be left alone together. Story
puzzles are simple and accessible because they do not rely on any particular body of
knowledge and yet they are mathematical in that a stated goal must be achieved
under a given set of logical constraints. Attention to logic, as evidenced by the
existence of these puzzles, is not the exclusive province of any one culture or
subculture. Here, the river<crossing problem, in African cultures as well as in Western
culture, will be used as an explicit example of the panhuman concern for mathemati-
cal ideas. Story puzzles are expressions of their cultures and so variations will be seen
in the characters, the settings and the way in which the logical problem is framed.

2. Western versions The Western origin of the wolf, goat, and cabbage puzzle is
most often attributed to a set of 53 problems designed to challenge youthful minds,
“Propositiones and acuendos iuvenes.” Although circulated around the year 1000,
Alcuin of York (735-804) is said to have authored these as he referred to them in a
letter to his most famous student, Charlemagne. The solution given by these works is
to carry over the goat, then transport the wolf and return with the goat, then carry
over the cabbage, then carry over the goat. A second solution, which simply
interchanges the wolf and cabbage, is often attributed to the French mathematician
Chuquet in 1484 but is found even earlier in the twelfth century in Germany in the
succinct form of Latin hexameter [1, 4, 5, 23].
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A farmer has to get a wolf, a goose, and a sack of corn across a river.
She has a boat, which can only carry her and one other thing.

If the wolf and the goose are left together, the wolf will eat the goose.

If the goose and the corn are left together, the chicken will eat the corn.

27



. www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/ O .
c O

\

g
?

<

LN

A farmer has to get a wolf, a goose, ® O

and a sack of corn across a river.

How can we use logic to specify the transitions?
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and a sack of corn across a river.

How can we use logic to specify the transitions?
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A farmer has to get a wolf, a goose,
and a sack of corn across a river.

How can we use logic to specify the transitions?
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A farmer has to get a wolf, a goose,
and a sack of corn across a river. ®

How can we use logic to specify the transitions?
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A farmer has to get a wolf, a goose, ® ® O

and a sack of corn across a river. ®

How can we use logic to specify the transitions?

32



one place
not solo

no conflict
no overload

(WW & WB @ WE) A =(WW A WB A WE)
GB — FB
GW A (WW v CW) = FW
-(GB A CB) A =(GB A WB) A =(WB A CB)
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one place
not solo

no conflict
no overload

(WW e WB & WE) A =«(WW A WB A WE) x4 (wolf,goose,corn,farmer)

GB — FB X3 (wolf,goose,corn)
GW A (WW v CW) = FW X2 (east, west)

-(GB A CB) A =(GB A WB) A =(WB A CB) x1
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A farmer has to get a wolf, a goose, ® O

and a sack of corn across a river.

How can we use logic to specify the transitions?
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How can we use logic to specify the O ®
transitions? o ® o

This is a non-deterministic system. We define a next state relation.
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How can we use logic to specify the
transitions?

\
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This is a non-deterministic system.
? We define a next state relation.

Again we introduce next state
variables WW' etc.

<

e

Here we have
FW A WW A GW A CW

Is it possible that WE" ?
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How can we use logic to specify the
transitions?

This is a non-deterministic system.
We define a next state relation.

We introduce next state variables
WW?’ etc. and give conditions on the
next state.

Here we have
FW A WW A GW A CW

Is it possible that WE’ ? NO

One thing true in our model is that
WE’ - WE v WB

What else do we need to say to give
a complete description ?

What does it mean for a description to be complete”
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How can we use logic to specify the
transitions?

This is a non-deterministic system.
o ¢ We define a next state relation.

o
o e o © e WW’etc. and give conditions on the
L ® next state.

?
®
o °® O % ’ .0 ) ®
B 2 . We introduce next state variables
<

J We require:
e ® FE' - FEVFB FW' = FW v FB
® o o ¢ * WE'-WEVWB WW -WWyvWB
«e” e GE'—- GEvGB GW’'—» GW v GB
® o ® CE’'=- CEvCB CW' = CW v CB

There is a transition between a pair of states
Iff these conditions are satisfied

What does it mean for a description to be complete?
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