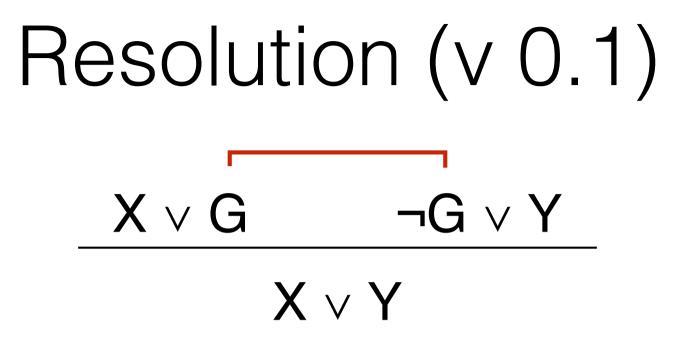
Informatics 1

Lecture 9 Resolution (part 2)

Michael Fourman



This rule is **sound**:

if a valuation falsifies the **conclusion** then it falsifies one of the **premises**

Constructing a refutation

If we apply this resolution rule

 $\neg G \lor Y$

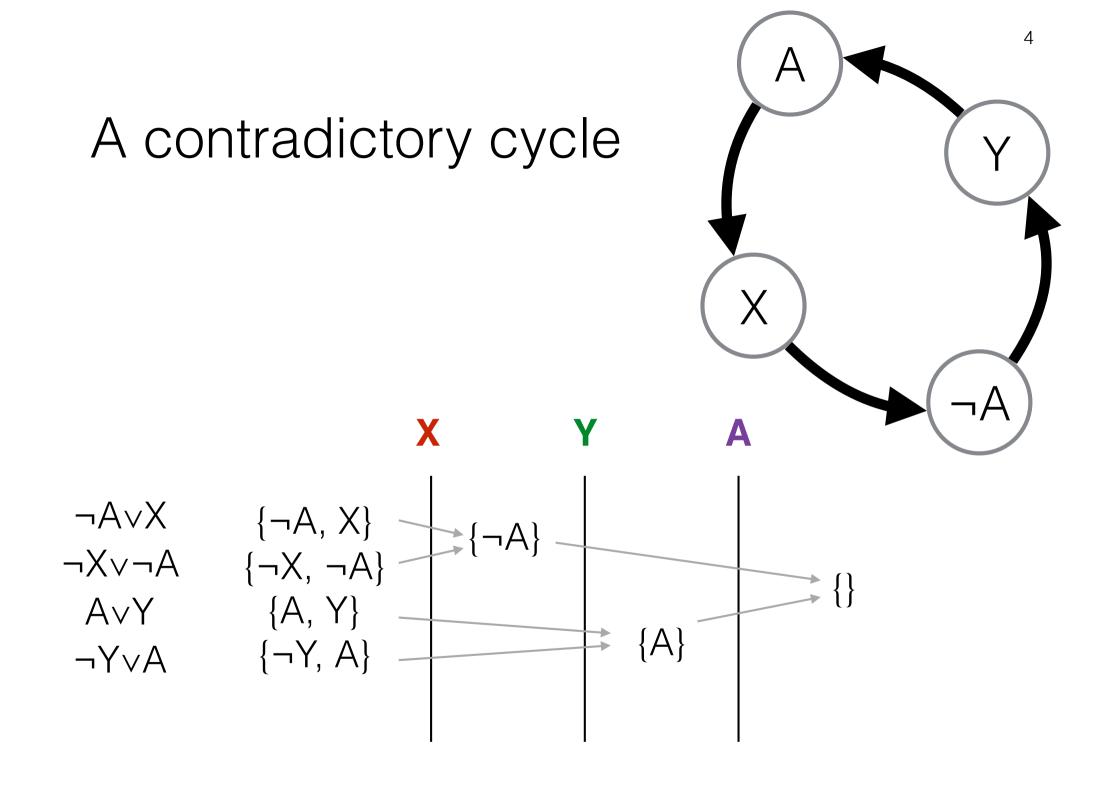
 $X \vee G$

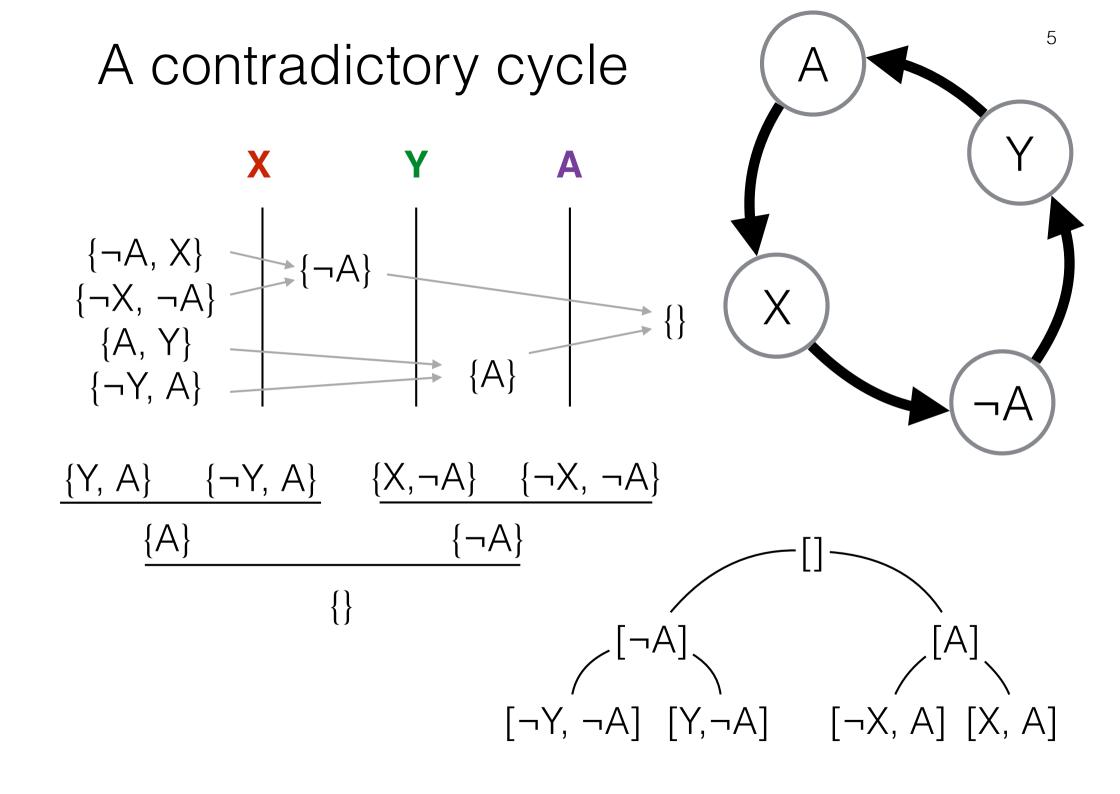
 $X \lor Y$ then given a refutation, V of the conclusion $V(X \lor Y) = \bot$

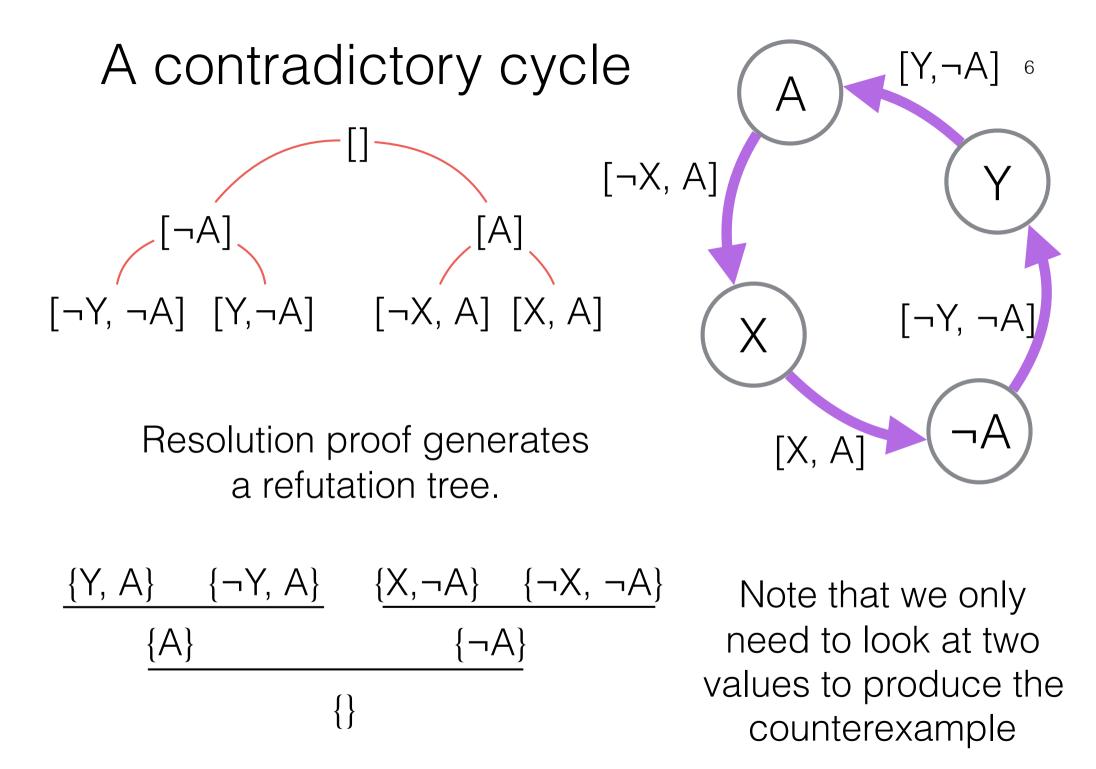
we can produce a premise that it refutes

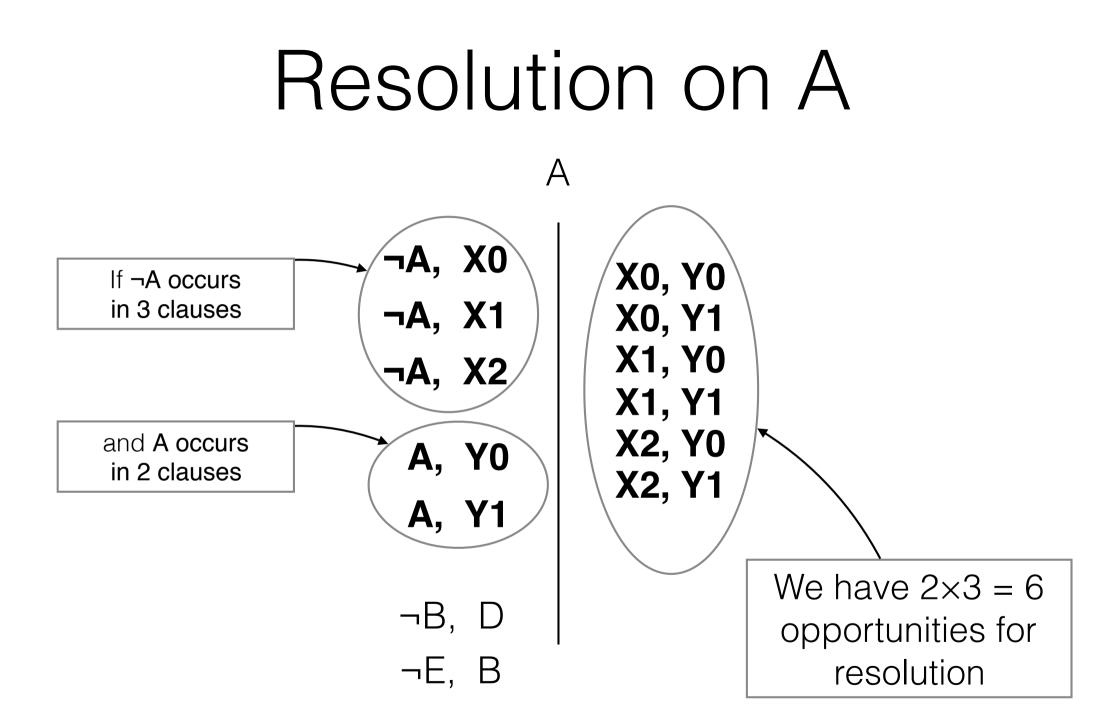
 $\begin{array}{l} \text{if } V(G) = \top \text{ then} \\ V \text{ refutes } \neg G \lor Y \\ V(\neg G \lor Y) = \bot \end{array}$

 $\begin{array}{l} \text{if } V(G) = \bot \text{ then} \\ V \text{ refutes } X \lor G \\ V(X \lor G) = \bot \end{array}$

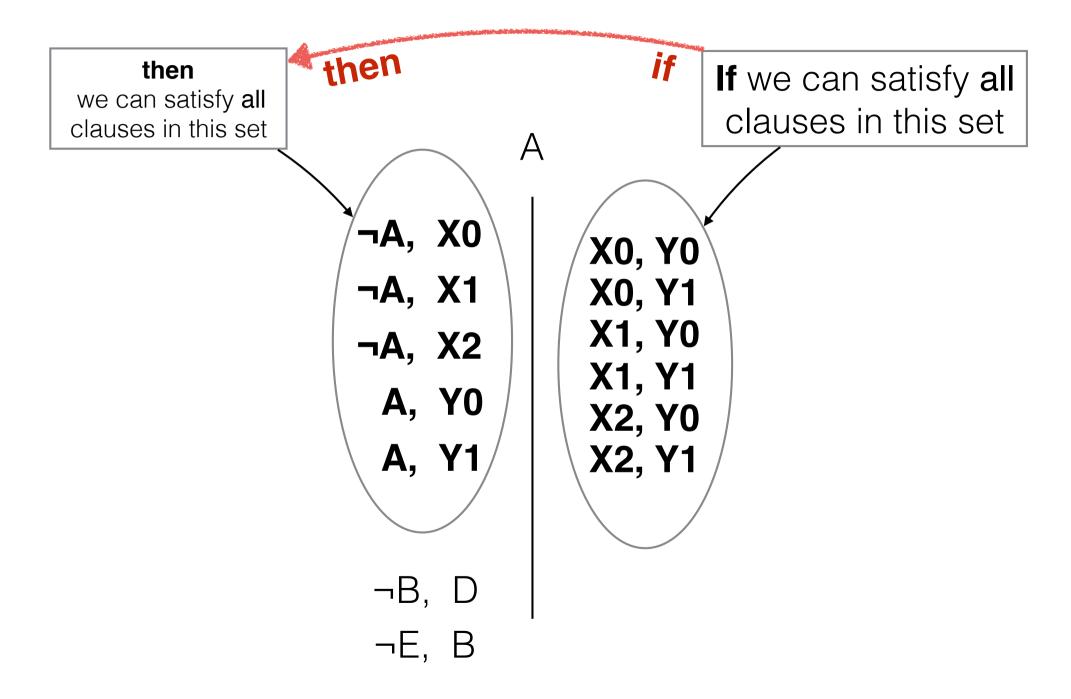


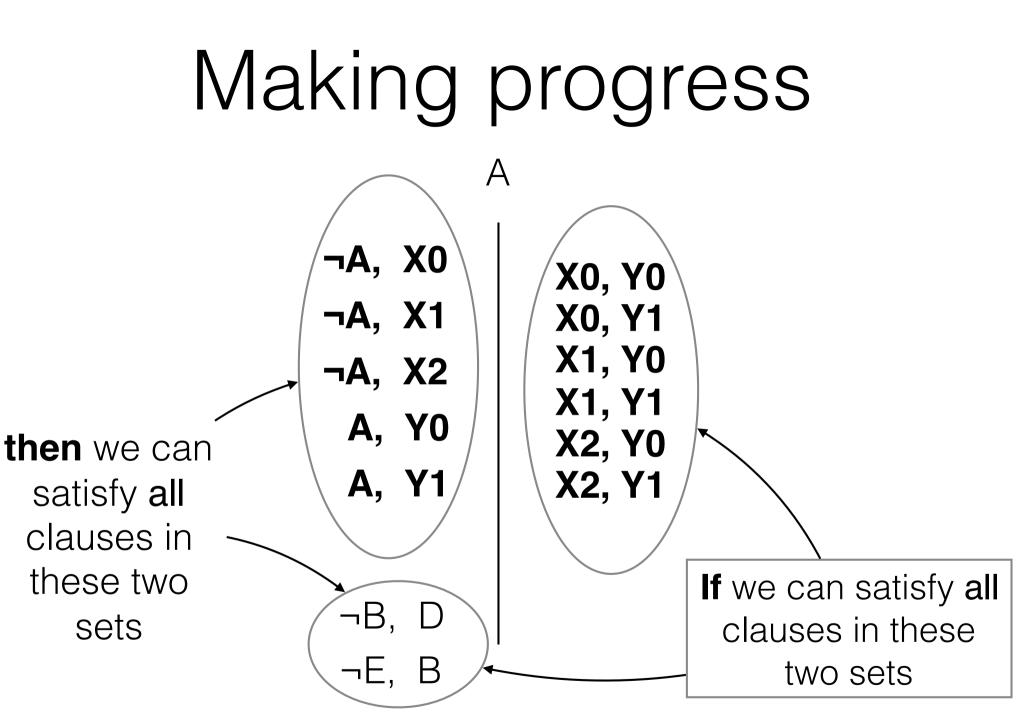




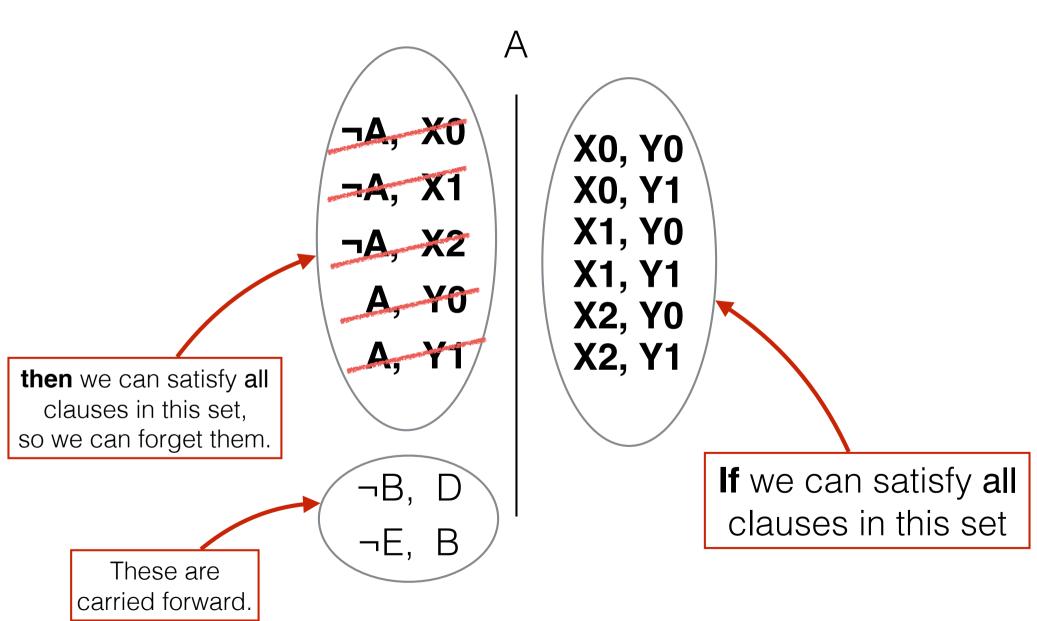


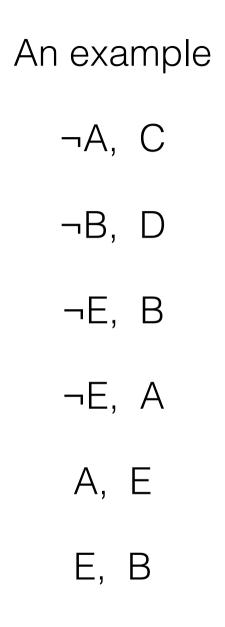
Making progress

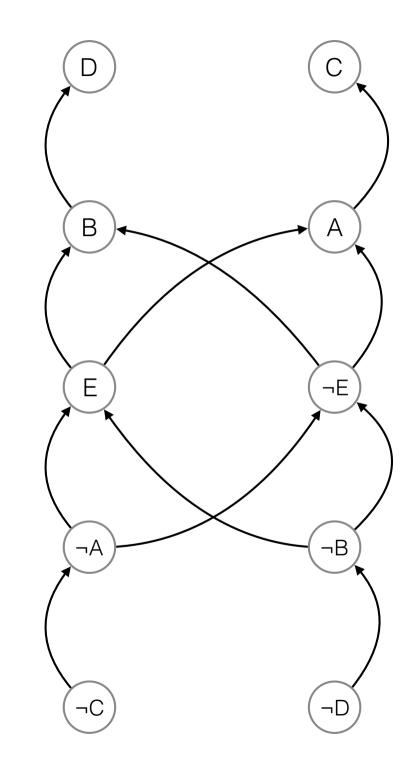


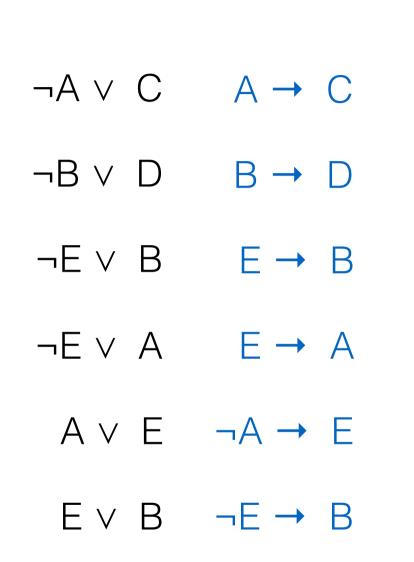


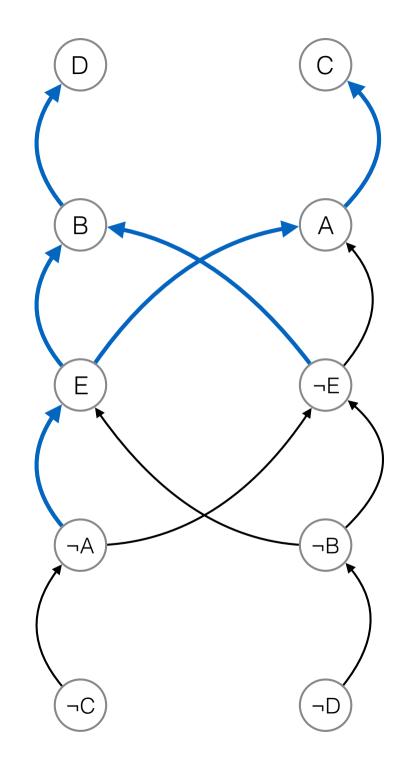
Making progress



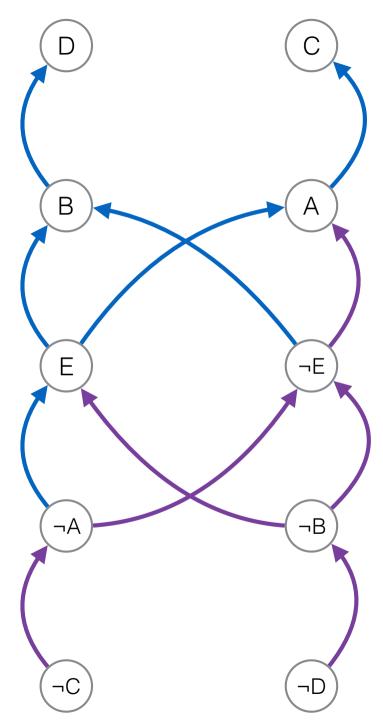








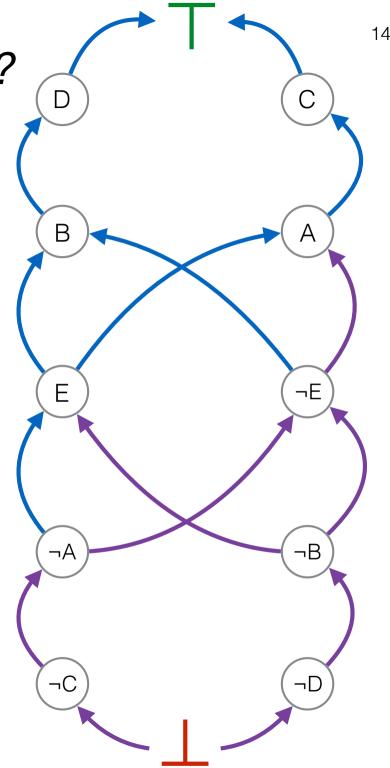
$\neg A \lor C$	A → C	$\neg C \rightarrow \neg A$
¬B∨D	B→ D	$\neg D \rightarrow \neg B$
¬E∨ B	E → B	¬B → ¬E
¬E∨ A	E → A	$\neg A \rightarrow \neg E$
A∨ E	¬A → E	$\neg E \rightarrow A$
E∨ B	¬E → B	$\neg B \rightarrow E$



How many satisfying valuations?

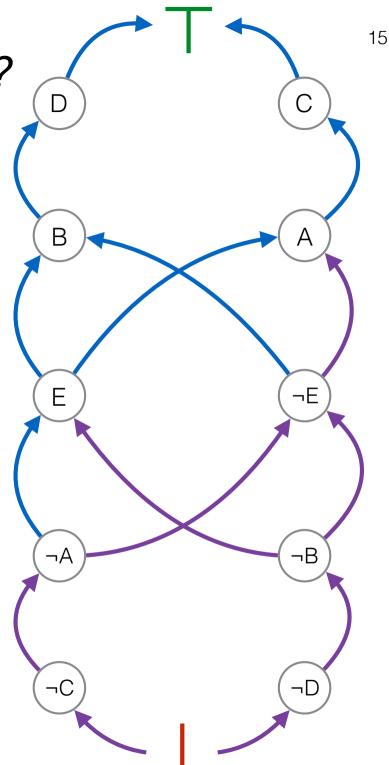
 $\neg A \lor C$

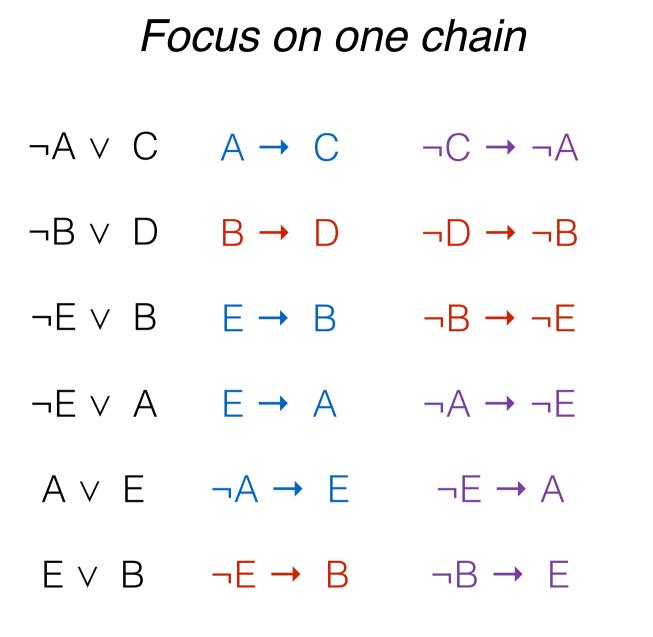
- $\neg B \lor D$ $\neg B \lor D$ draws a line between $\neg E \lor B$ false and true, such that
- ¬E ∨ A each atom is separated from its negation, and

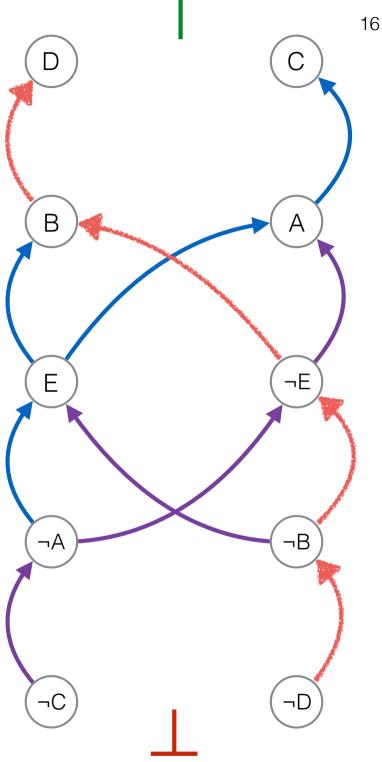


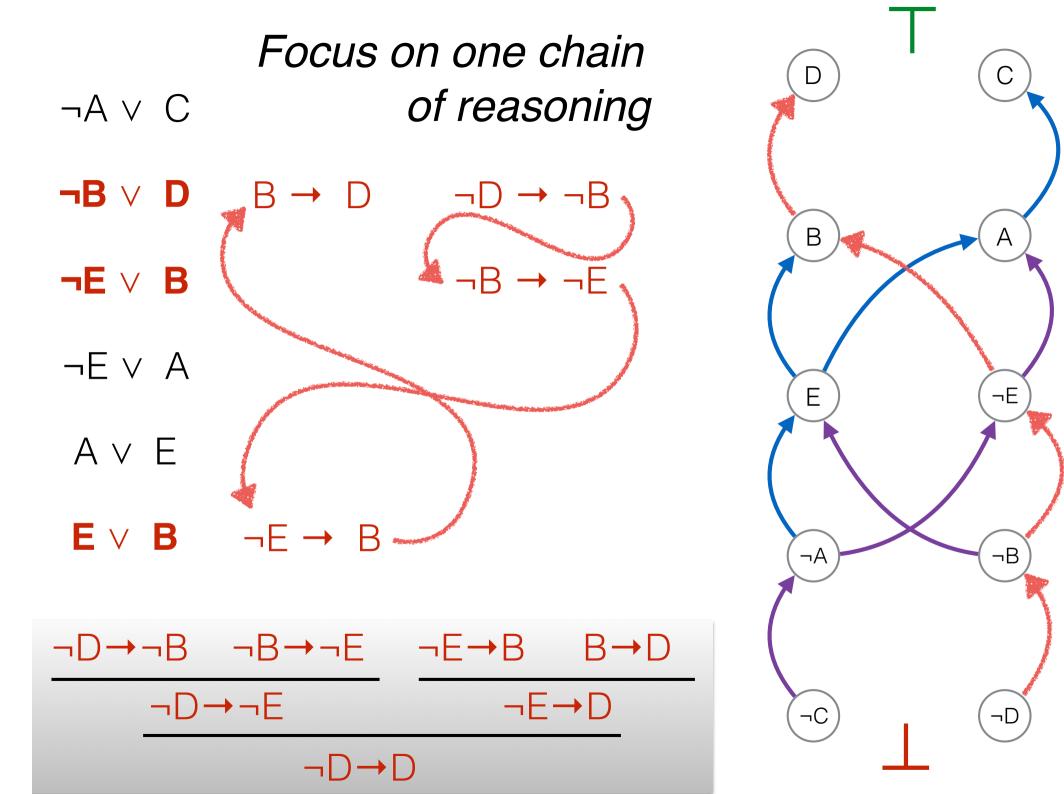
How many satisfying valuations?

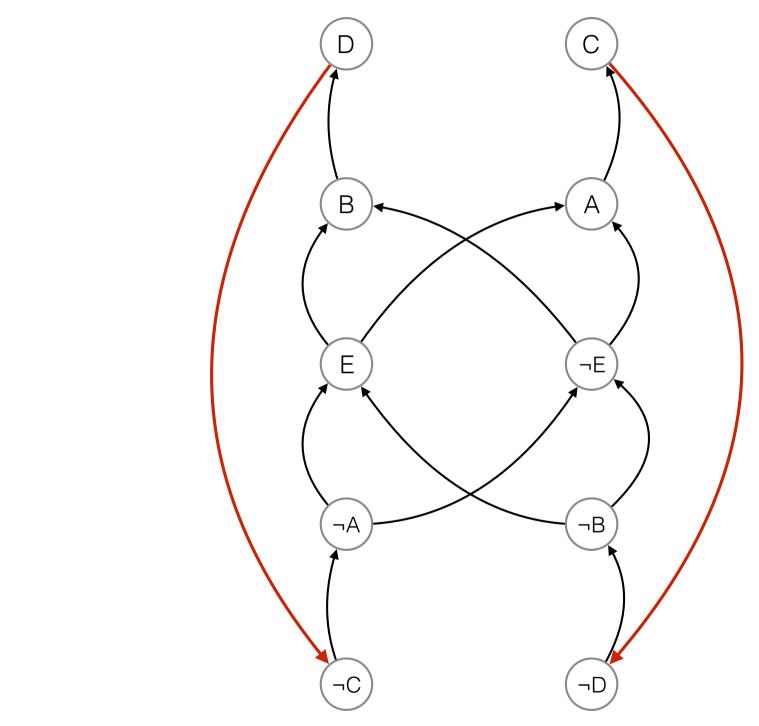
- $\neg A \lor C$ Unless there is a cycle
including both X and $\neg X$,
for some letter X, there is
at least one satisfying
valuation.
- $\neg E \lor A$ If there is a path $\neg X \rightarrow X$ then X must be true in $A \lor E$ every satisfying valuation.
 - $E \lor B$ If there is a path $X \rightarrow \neg X$ then X must be false in every satisfying valuation.

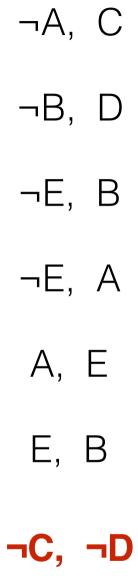


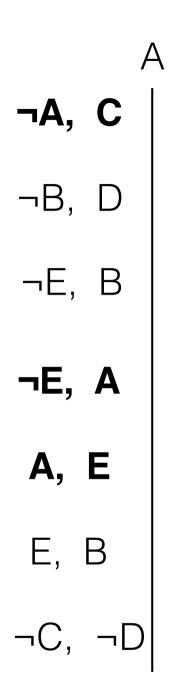


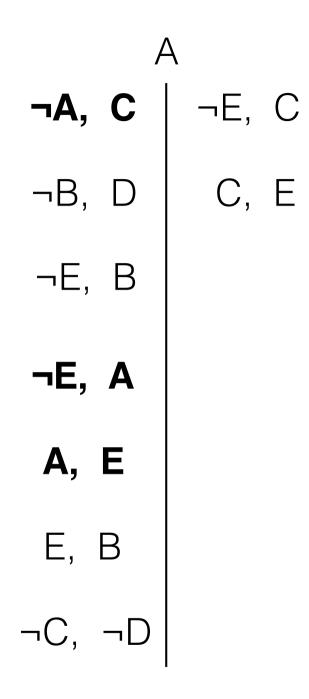


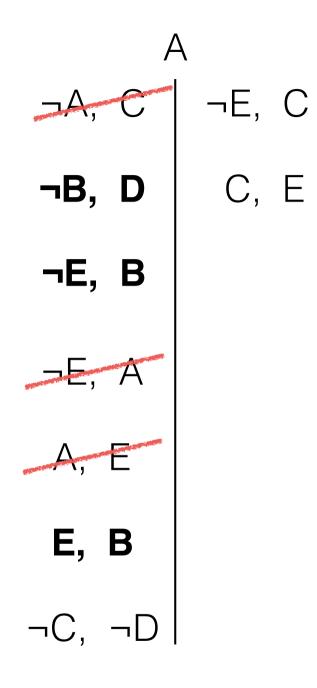




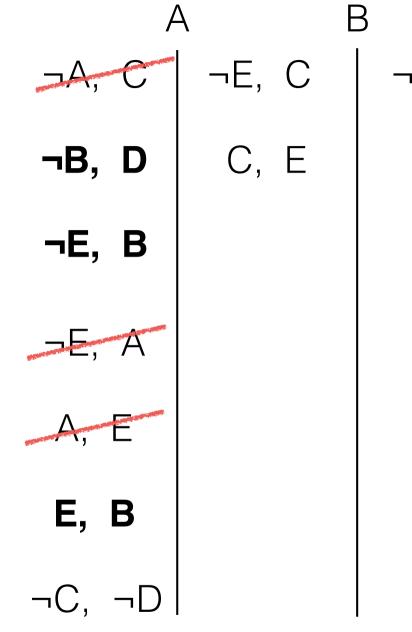




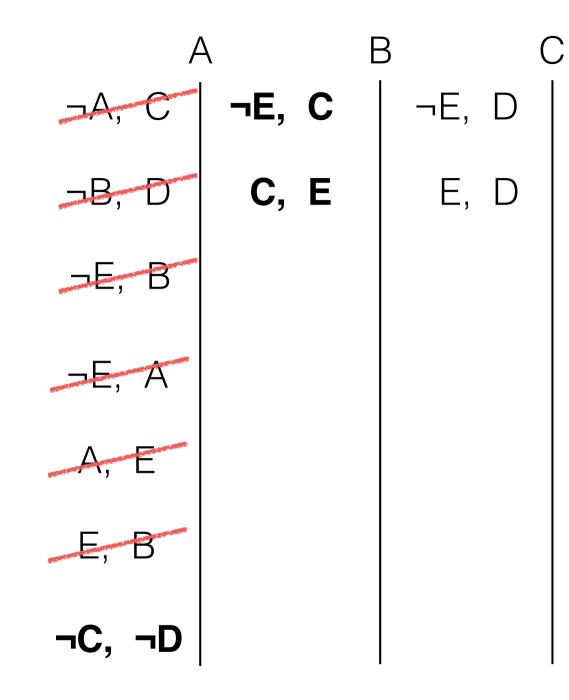


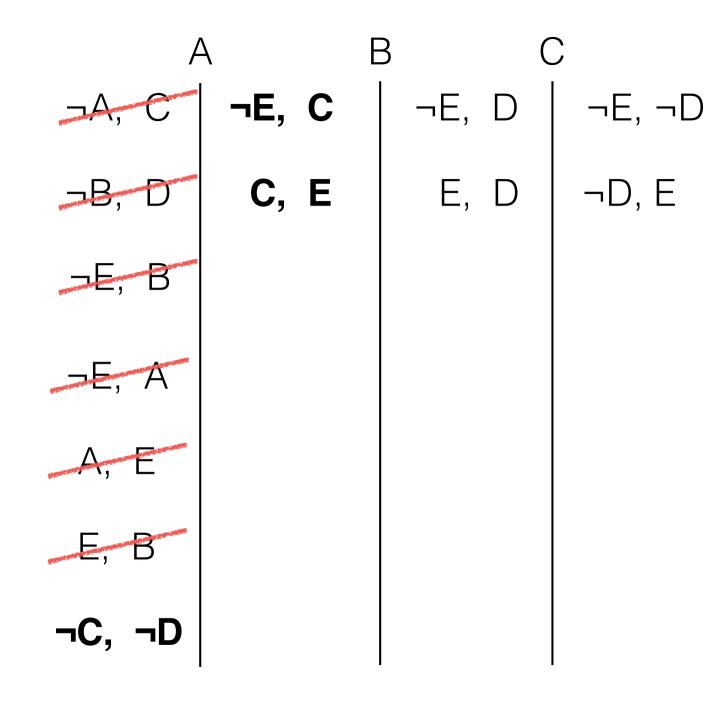


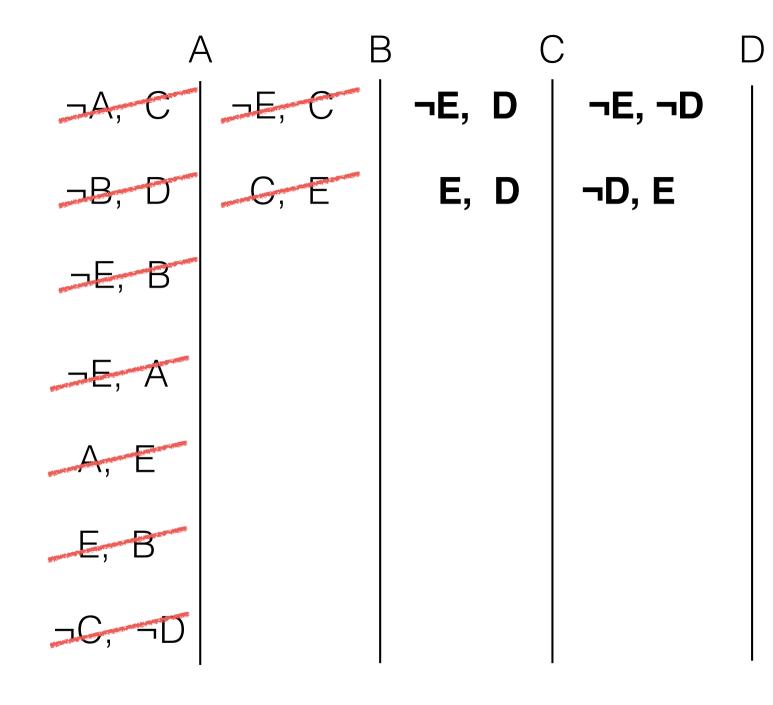
В

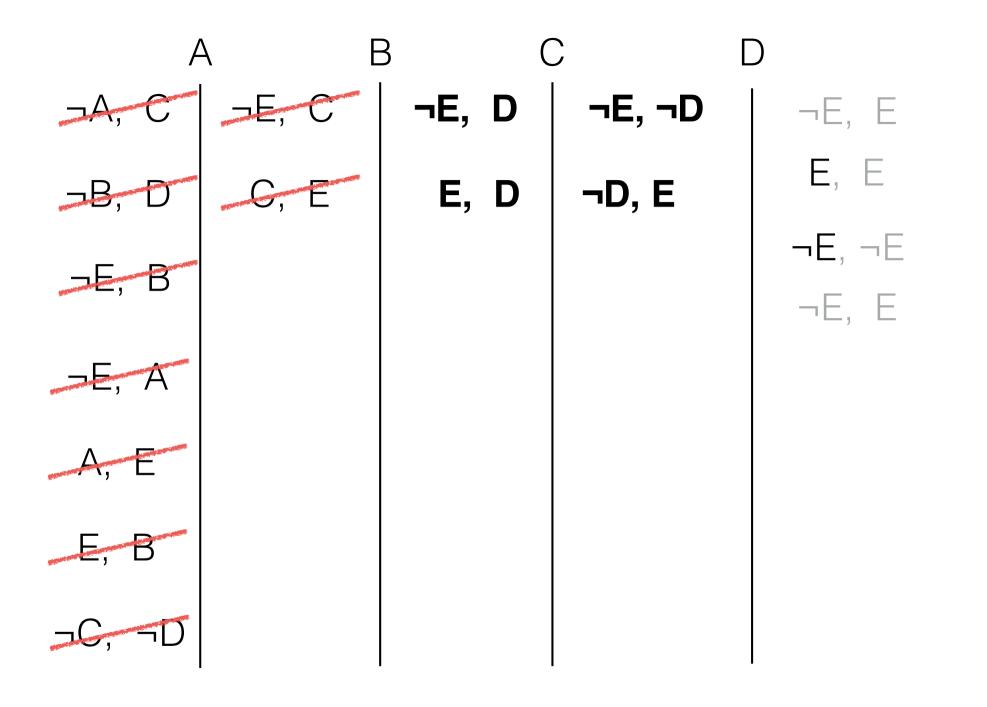


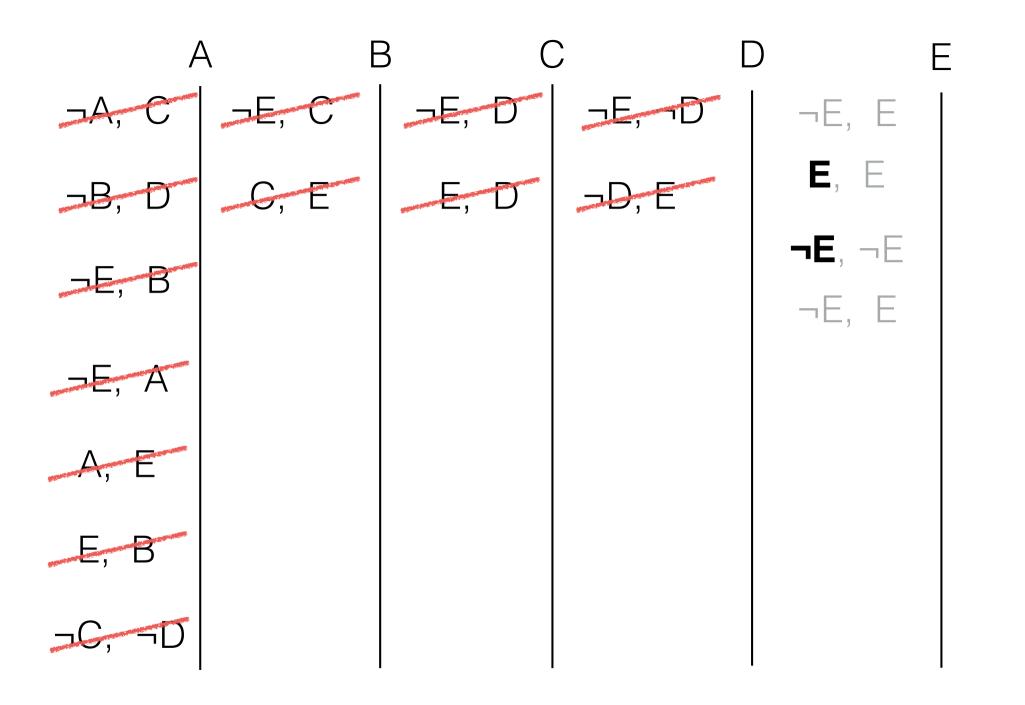
⊐E, D E, D

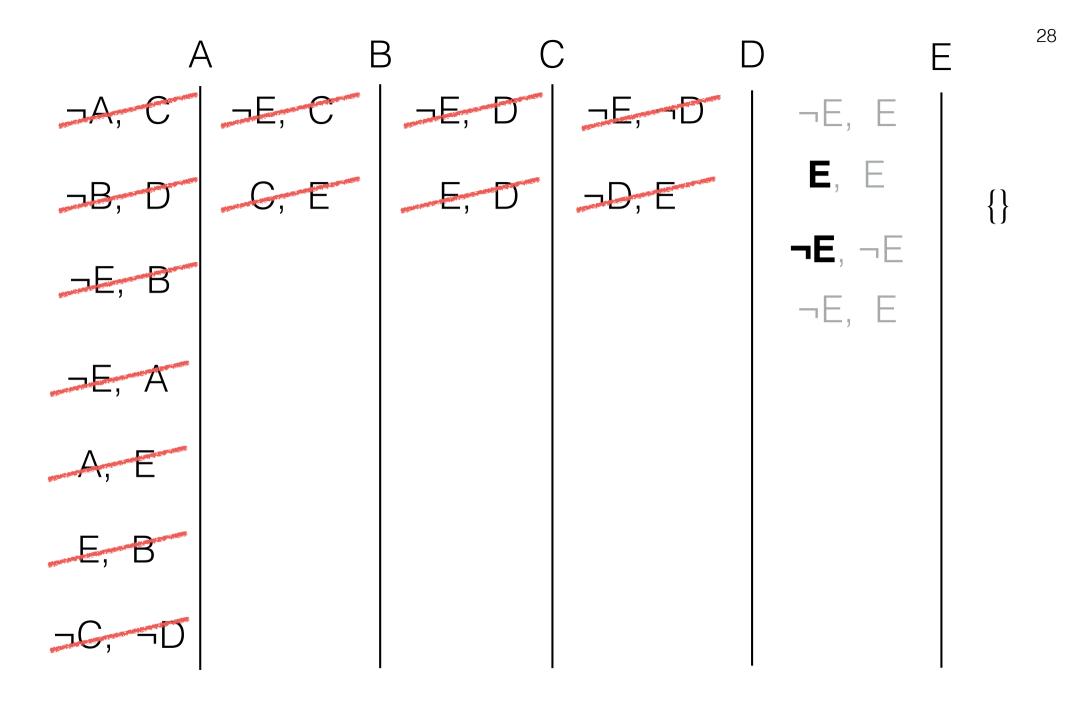












A complete proof procedure for propositional logic that works on formulas expressed in conjunctive normal form. (Robinson 1965)

Conjunctive Normal Form (CNF)

Literal: a propositional atom A or its negation ¬A Clause: a disjunction of (a set of) literals. CNF: a conjunction of (a set of) clauses.

From two clauses

$$C_1 = (X \cup \{A\}), C_2 = (Y \cup \{\neg A\})$$

the resolution rule generates the new clause $(X \cup Y) = R(C_1, C_2)$

where X and Y are sets of literals, not containing A or $\neg A$.

(XuY) is the resolvant A is the variable resolved on

A resolution refutation of a CNF F (a set of clauses) is a sequence C₁, C₂, ..., C_m of clauses such that $C_m = \{\}$, and

each C_i is either

a member of F

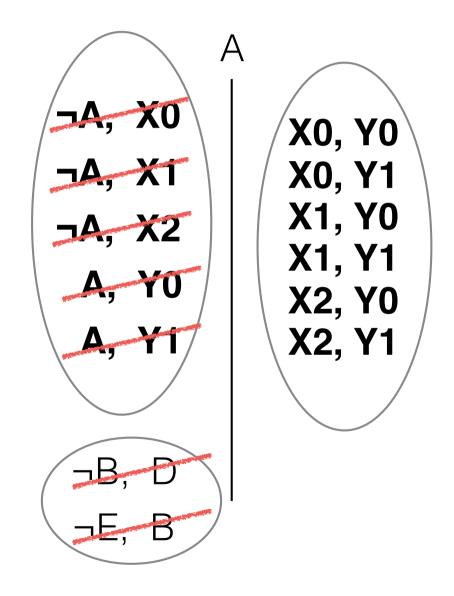
or

the resolvant of two previous clauses in the proof: $C_i = R(C_j, C_k)$, where j,k < i

- Any resolution proof can be represented as a DAG nodes are clauses in the proof.
- Clauses in *F* are leaves: they have no incoming edges.
- Every clause C_i that arises from a resolution
- step has two incoming edges. One from each
- of the clauses (C_j, C_k) that were resolved together to obtain $C_i = R(C_j, C_k)$.
- Each non-leaf node C_i is labeled by the variable that was resolved away to obtain it.

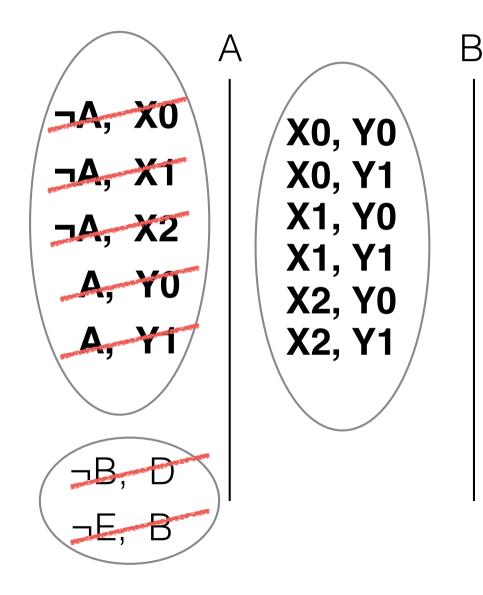
When resolution 'fails'

В



If we have not produced {}, and there are no remaining opportunities for resolution, then every remaining literal is a ¬E, D pure literal. *Pure* means that its negation does not occur. We can satisfy the remaining clauses by making every literal true.

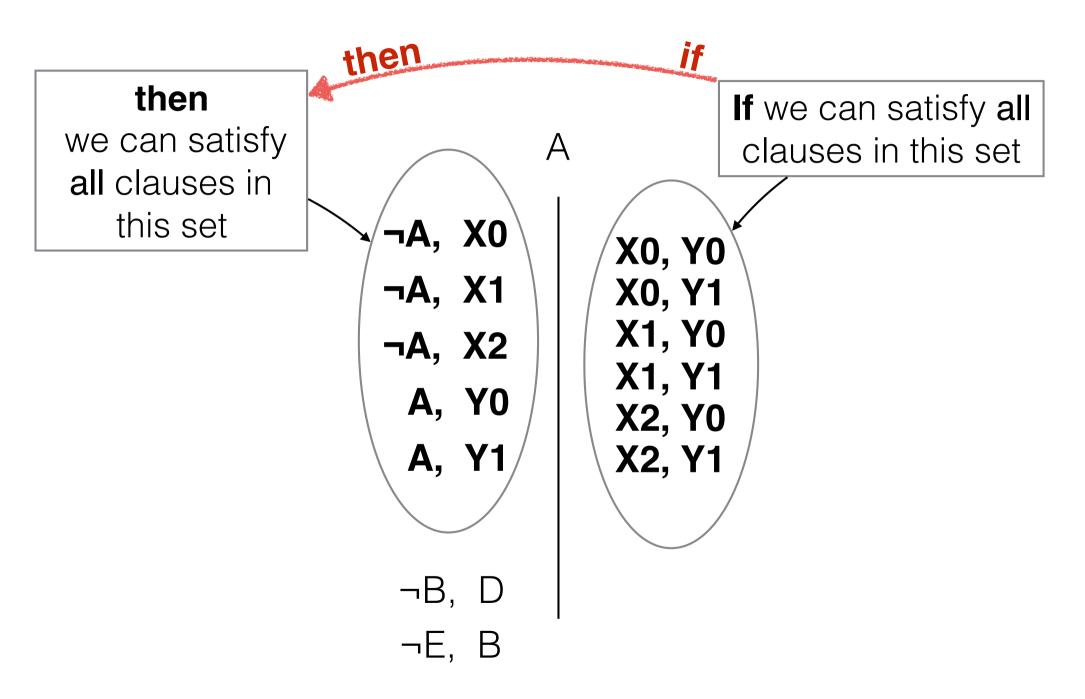
When resolution 'fails'



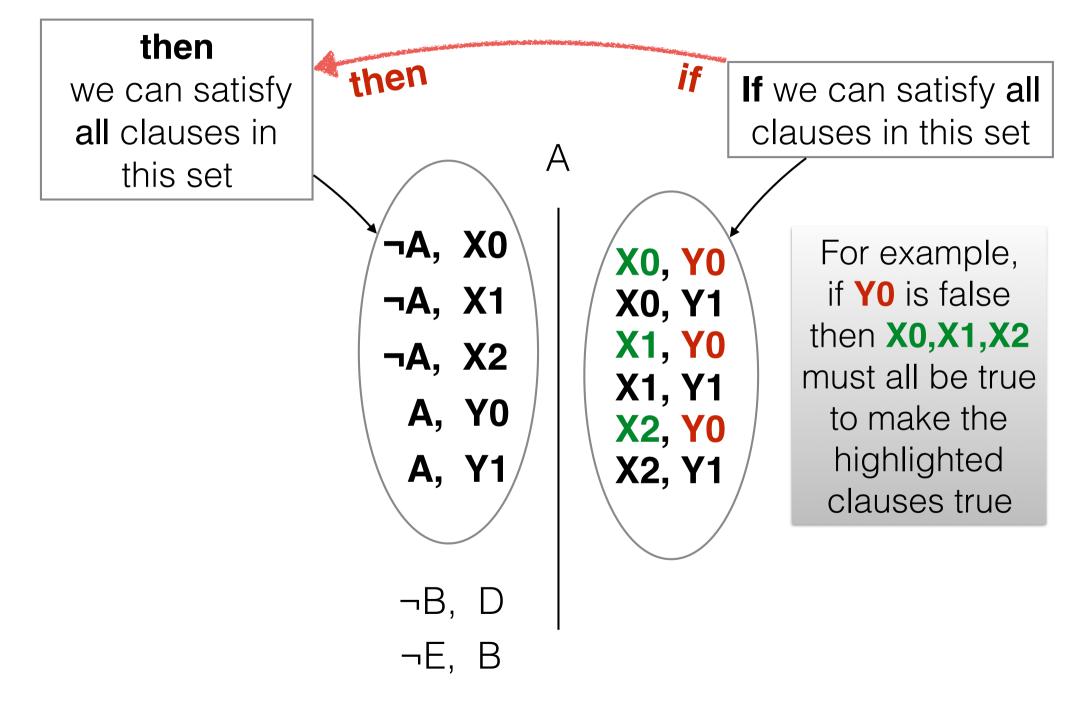
We can satisfy the remaining clauses by making every literal true.

¬E, D This gives a partial valuation, which can be extended to the resolved variables in order to satisfy every clause.

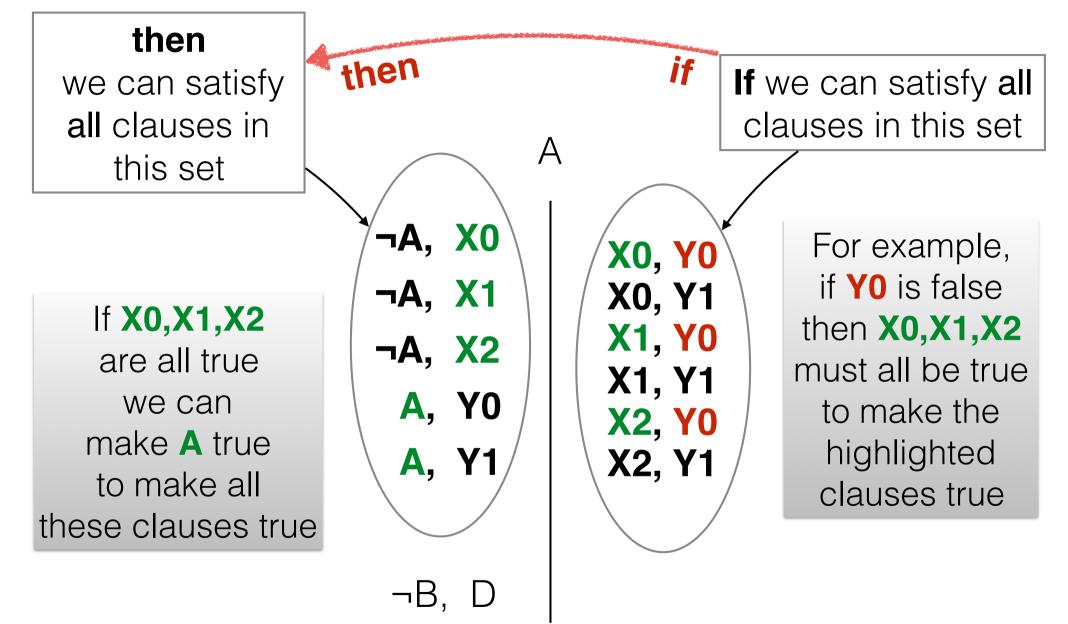
Making progress



Extending a partial solution

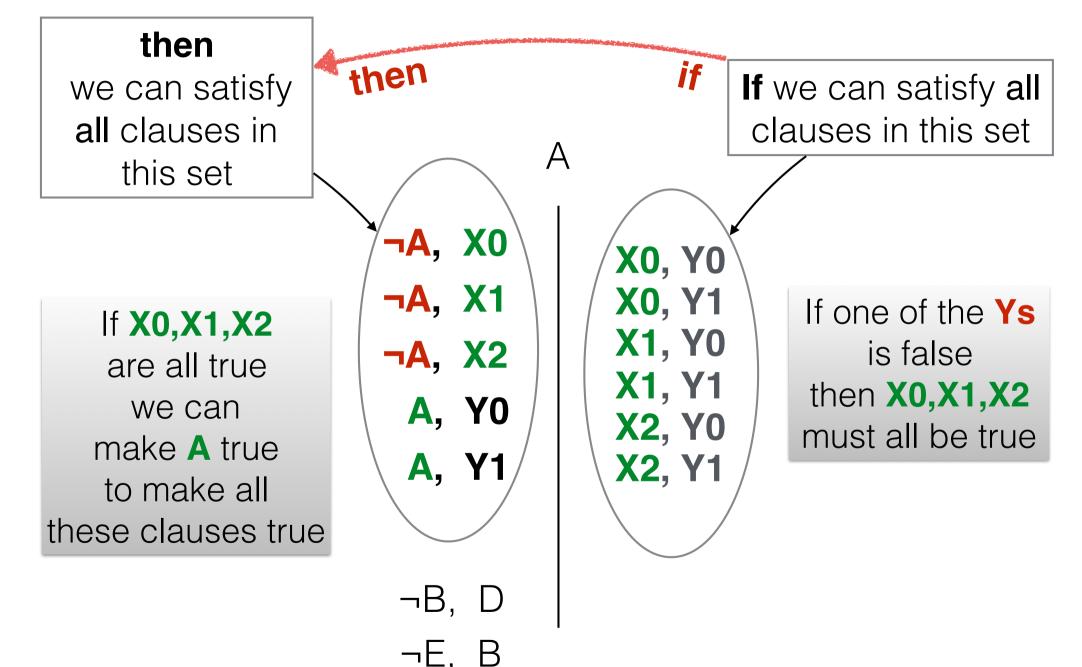


one way

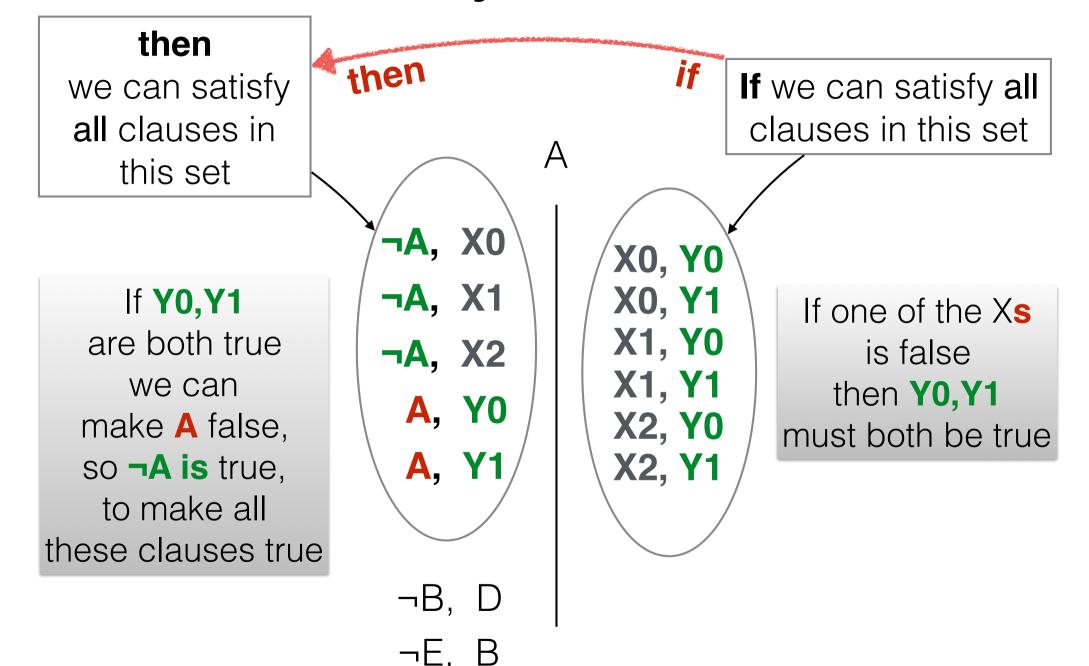


¬E. B

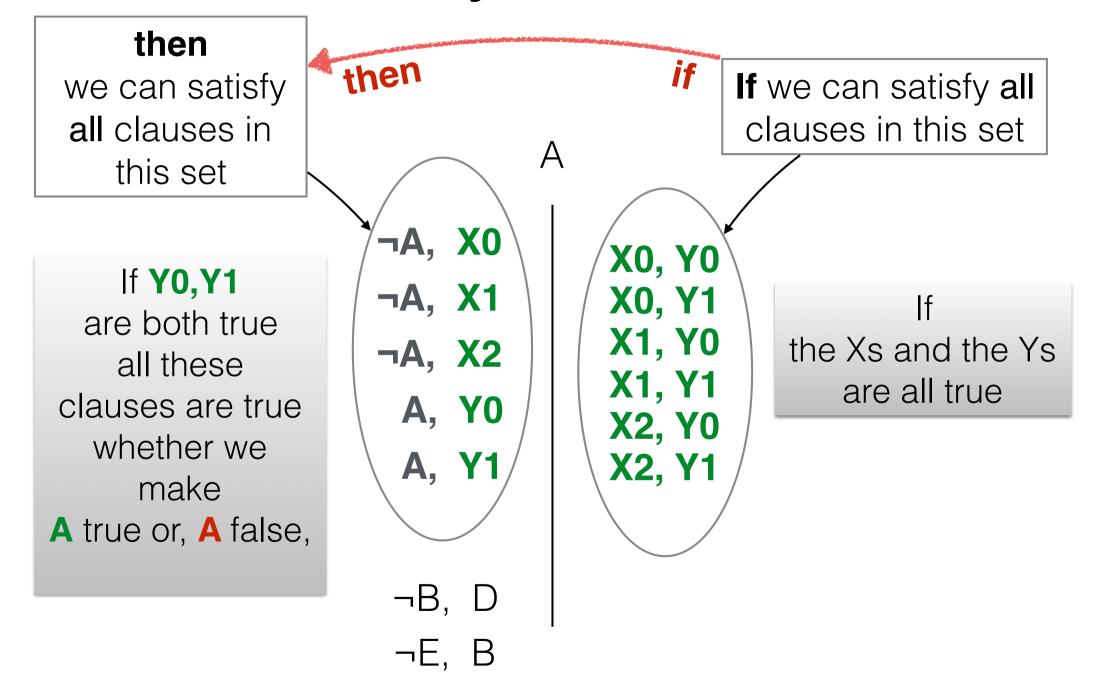
or another

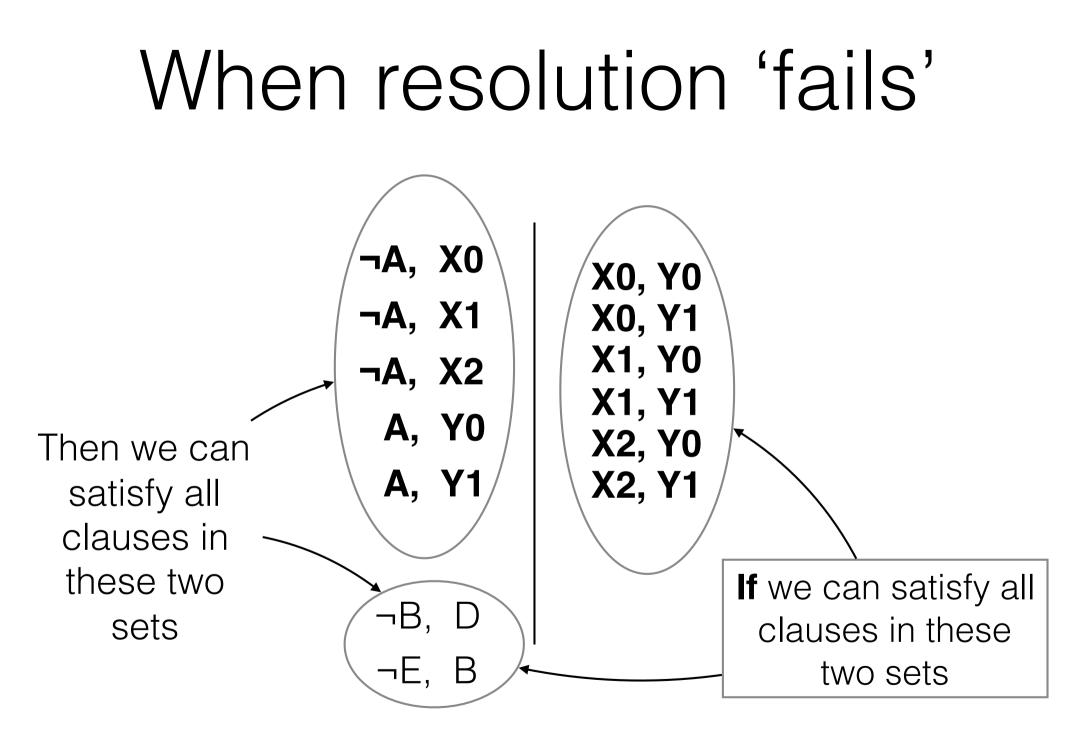


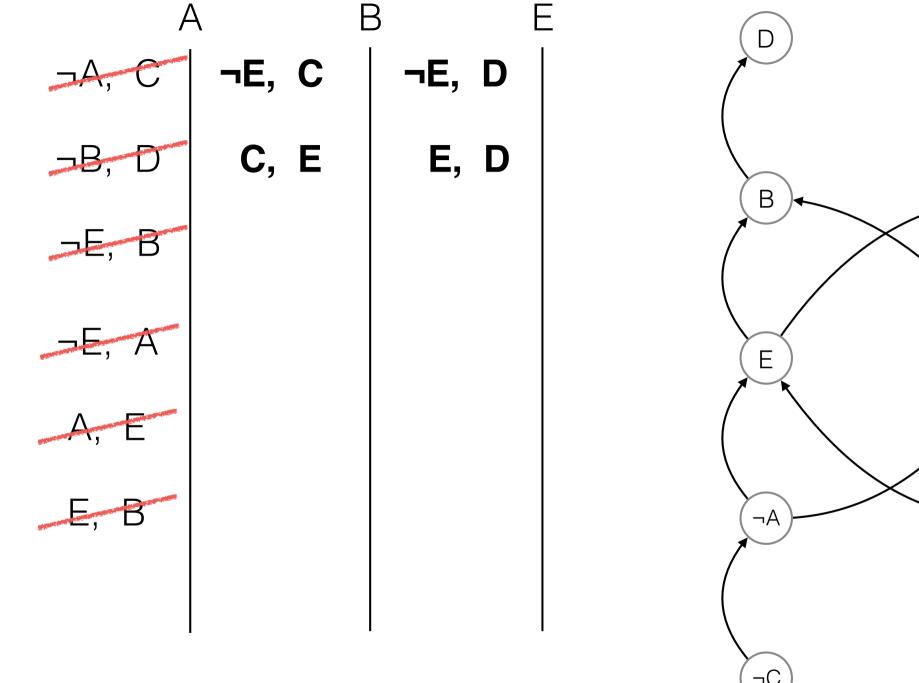
one way or another

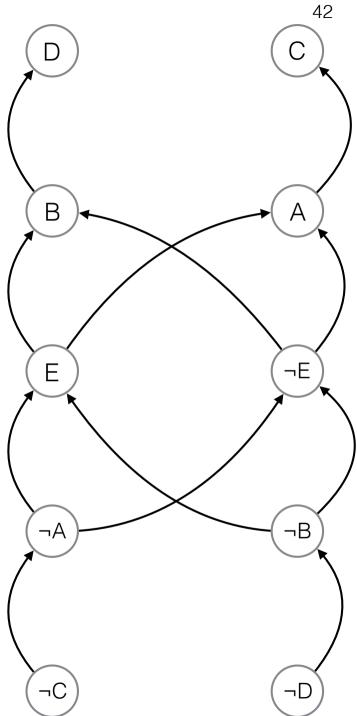


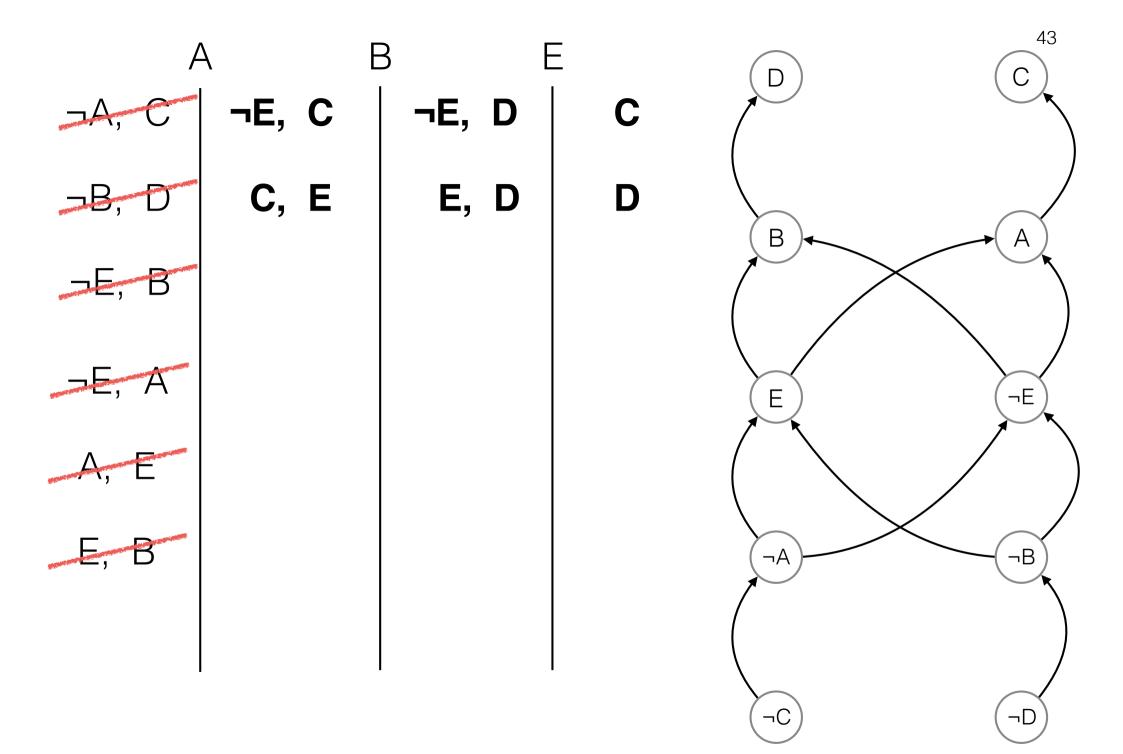
one way or another

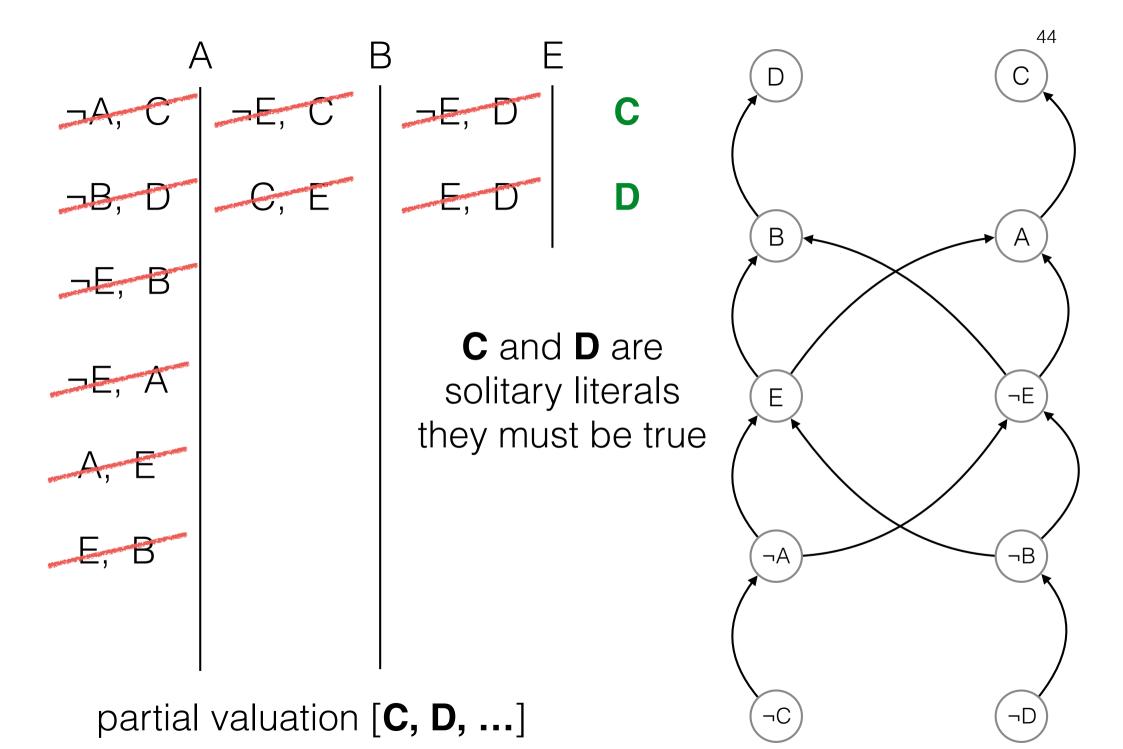


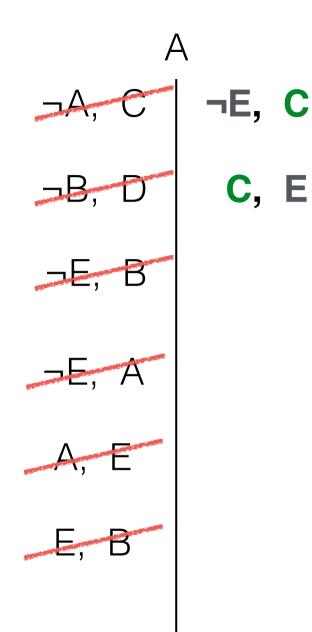












Ε ¬E, D С **E**, **D** D All the **¬E** clauses and the E clauses used in resolution are true, so we can choose to make **E** true or false

partial valuation [**C**, **D**, ...] E can be freely chosen



-B, D | C, E

¬E, B

E, **B**

¬E, C

No matter how we chose **E** The **¬B** clause is true since **D** is true

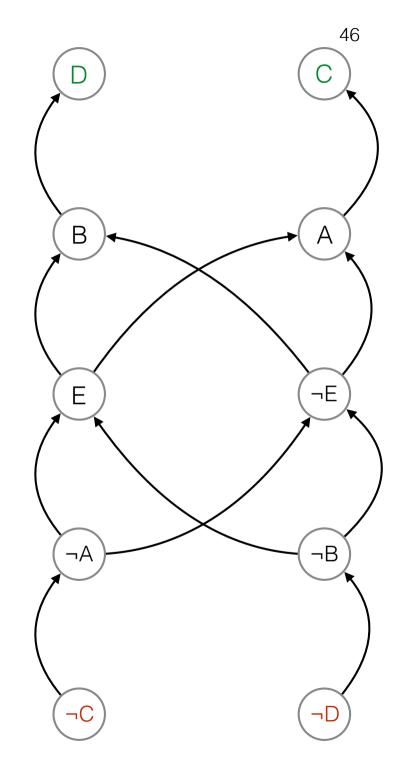
¬E, D

E, D

С

No matter how we chose **E** to make both **B** clauses true we must make **B** true

partial valuation [**C**, **D**, ...] E can be freely chosen



No matter how we chose **E** The **¬B** clause is true since **D** is true

¬E, D

E, D

С

No matter how we chose **E** to make both **B** clauses true we must make **B** true

partial valuation [**C**, **D**, **B**, ...] E can be freely chosen

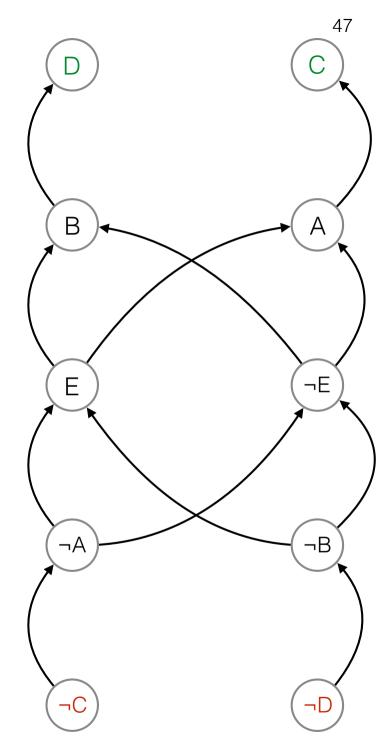
¬E, C

C, E

¬₿, D

¬E, B

E, **B**



No matter how we chose **E** The **¬A** clause is true since **C** is true

¬E, D

E, D

С

No matter how we chose **E**, to make both **A** clauses true we must make **A** true

partial valuation [**C**, **D**, **B**, **A**] E can be freely chosen

¬E, C

C, **E**

¬A, C

¬₿, D

¬E, B

¬E, A

A, **E**

E, B

