
Informatics 1
Lecture 8 Resolution

Michael Fourman

1

Binary constraints

(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B)

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B)

You may not take both Archeology and Chemistry
If you take Biology you must take Chemistry

You must take Biology or Archeology
If you take Chemistry you must take Divinity
You may not take both Divinity and Biology

3
A

B

D

C

¬A

¬B

¬D

¬C

(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B)
≡

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B)
≡

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

We represent 5 clauses (constraints)
by 10 arrows to give a directed graph.

Here we have 4 atoms A, B, C, D ; so 8 literals.  
Any valuation makes 4 literals true; 4 literals false.

The valuation satisfies the constraints
provided no arrow goes from ⊤ to ⊥.

In this case, we can arrange the diagram with a
line that satisfies the arrow rule,  

and separates each atom from its negation.

(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B)
≡

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B)
≡

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

The valuation satisfies the constraints
provided no arrow goes from ⊤ to ⊥.

In this case, we can arrange the diagram so we
can draw a line that satisfies the arrow rule, 
and separates each atom from its negation.

For this example, there are only two such lines.

The one shown here makes A true  
and B, C, D all false

A

B

D

C

¬A

¬B

¬D

¬C

(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B)
≡

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B)
≡

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

The valuation satisfies the constraints
provided no arrow goes from ⊤ to ⊥.

In this case, we can arrange the diagram so we
can draw a line that satisfies the arrow rule, 
and separates each atom from its negation.

For this example, there are only two such lines.

The one shown here makes A, D true  
and B, C false

A

B

D

C

¬A

¬B

¬D

¬C

(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B)
≡

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B)
≡

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

For this example, there are only two such lines.

For example, the valuation that makes  
A, C, D true and B false  
violates the arrow rule

Our analysis shows that our constraints are
equivalent to the requirement

A ∧ ¬B ∧ ¬C

We will find a way to compute this result logically.

A

B

D

C

¬A

¬B

¬D

¬C

(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B)
≡

A ∧ ¬B ∧ ¬C

Our analysis shows that our constraints are
equivalent to the requirement

A ∧ ¬B ∧ ¬C

Two expressions are equivalent iff they are
satisfied by the same valuations.

A

B

D

C

¬A

¬B

¬D

¬C

8R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒

R → G G → A
R → A

9R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒
Each condition excludes some valuations  

If we exclude valuations where R∧¬G 
and we exclude valuations where G∧¬A

then
we exclude valuations where R∧¬A 

10R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒

¬(R∧¬G) ¬(G∧¬A)
¬(R∧¬A)

If we exclude valuations where R∧¬G 
and we exclude valuations where G∧¬A

then
we exclude valuations where R∧¬A

11R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒

¬R ∨ G ¬G ∨ A
¬R ∨ A

¬(R∧¬G) ¬(G∧¬A)
¬(R∧¬A)

Resolution (prototype)
¬R ∨ G ¬G ∨ A

¬R ∨ A

If a valuation satisfies the constraints above the line  
then it satisfies the constraint below the line.

We say the rule is sound.

Resolution (prototype)
¬R ∨ G ¬G ∨ A

¬R ∨ A

X ∨ G ¬G ∨ Y
X ∨ Y

Resolution (v 0.1)
X ∨ G ¬G ∨ Y

X ∨ Y

This rule is sound:
if a valuation satisfies the premises

(the constraints above the line)
then it satisfies the conclusion

(the constraint below the line)

Resolution (examples)
R ∨ S ∨ T ∨ G ¬G ∨ P ∨ Q

R ∨ S ∨ T ∨ P ∨ Q

This rule is sound:
if a valuation satisfies the premises

(the constraints above the line)
then it satisfies the conclusion

(the constraint below the line)

Resolution (variations)
X ∨ G ¬G

X ∨ Y

These rules are sound:
if a valuation satisfies the premises

(the constraints above the line)
then it satisfies the conclusion

(the constraint below the line)

G ¬G ∨ Y
Y

Resolution (v 0.1)
X ∨ G ¬G ∨ Y

X ∨ Y

This rule is sound:

if a valuation falsifies the conclusion
then it falsifies one of the premises

Resolution (v 0.1)
X ∨ G ¬G ∨ Y

X ∨ Y

if a valuation, V, falsifies the conclusion

i.e. if V(X ∨ Y) = ⊥ then

if V(G) = ⊥ then V(X ∨ G) = ⊥
if V(G) = ⊤ then V(¬G ∨ Y) = ⊥

Resolution (v 1.0)
X ∨ G ¬G ∨ Y

X ∨ Y

if a valuation, V, falsifies the conclusion

i.e. if V(X ∨ Y) = ⊥ then

if V(G) = ⊥ then V(X ∨ G) = ⊥
if V(G) = ⊤ then V(¬G ∨ Y) = ⊥

20

Clausal form is a set of sets of literals

{ X0, X1, … , Xn-1 }

where each clause, Xi = { L0,…,Lmi-1 }  
is a set of literals

21

Resolution (v. 1.0)  
rule for clauses

X Y where ¬A ∈ X, A ∈ Y
(X ⋃ Y) \ { ¬A, A }

If a valuation V makes everything in the conclusion false
then that valuation must make everything in one or other of

the premises false.

If V(A) = true, then V makes everything in X false
If V(A) = false, then V makes everything in Y false

22

Resolution (v. 1.0)  
rule for clauses

X Y where ¬A ∈ X, A ∈ Y
(X ⋃ Y) \ { ¬A, A }

If a valuation V makes everything in the conclusion false
then that valuation must make everything in one or other of

the premises false.

If V(A) = true, then V makes everything in X false
If V(A) = false, then V makes everything in Y false

side-conditionset union set difference

23

Resolution (v. 1.0)  
rule for clauses

if
we start from some set of constraints and apply resolution,

then
adding the new constraints 

 doesn’t exclude any more states

if V contradicts any new constraint
then it contradicts some original constraint

Resolution

24

{{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X}}

{¬Z,¬X}{Z,Y} {Q,¬Z,X}{¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}

[{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X},{¬Z,X}, {¬Z}, {Z},{}]

Y

Z

X

Q

Resolution

25

{{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X}}

{¬Z,¬X}{Z,Y} {Q,¬Z,X}{¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}

[{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X},{¬Z,X}, {¬Z}, {Z},{}]

Y

Z

X

Q

Refutation

Resolution

26

{¬Z,¬X}{Z,Y} {Q,¬Z,X} {¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}

Y

Z

X

Q

{Z,X}{¬Z,¬Y} {¬Q,Z,¬X} {Q,Z,¬X}

{Z,¬X}

{Z}

{¬Z,Y}

{¬Z}

{}

Y

Z

X

Q

these are disjunctions

these are conjunctions

is refuted by
this

that

Refutation

Resolution

27

{¬Z,¬X}{Z,Y} {Q,¬Z,X} {¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}

Y

Z

X

Q

{Z,X}{¬Z,¬Y} {¬Q,Z,¬X} {Q,Z,¬X}

{Z,¬X}

{Z}

{¬Z,Y}

{¬Z}

{}

Y

Z
X

Q

these are disjunctions

these are conjunctions
is refuted by

this

that

When does resolution stop?
What does a set of clauses look like when there are no

opportunities for resolution?

Tomorrow we will see that if resolution stops, without producing
the empty clause, then we can construct a satisfying valuation.

This shows that the resolution procedure is complete – if a set
of constraints is inconsistent we will produce the empty clause

and a refutation tree.
Otherwise we can produce a satisfying valuation.

