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Binary constraints

(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B) 

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B)

You may not take both Archeology and Chemistry 
If you take Biology you must take Chemistry 

You must take Biology or Archeology 
If you take Chemistry you must take Divinity 
You may not take both Divinity and Biology
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(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B) 
≡ 

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B) 
≡ 

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

We represent 5 clauses (constraints) 
by 10 arrows to give a directed graph. 

Here we have 4 atoms A, B, C, D ; so 8 literals.  
Any valuation makes 4 literals true; 4 literals false. 

The valuation satisfies the constraints 
provided no arrow goes from ⊤ to ⊥. 

In this case, we can arrange the diagram with a 
line that satisfies the arrow rule,  

and separates each atom from its negation.



(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B) 
≡ 

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B) 
≡ 

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

The valuation satisfies the constraints 
provided no arrow goes from ⊤ to ⊥. 

In this case, we can arrange the diagram so we 
can draw a line that satisfies the arrow rule, 
and separates each atom from its negation. 

For this example, there are only two such lines. 

The one shown here makes A true  
and B, C, D all false
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(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B) 
≡ 

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B) 
≡ 

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

The valuation satisfies the constraints 
provided no arrow goes from ⊤ to ⊥. 

In this case, we can arrange the diagram so we 
can draw a line that satisfies the arrow rule, 
and separates each atom from its negation. 

For this example, there are only two such lines. 

The one shown here makes A, D true  
and B, C false
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(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B) 
≡ 

(A→¬C)⋀(B→C)⋀(¬B→A)⋀(C→D)⋀(D→¬B) 
≡ 

(C→¬A)⋀(¬C→¬B)⋀(¬A→B)⋀(¬D→¬C)⋀(B→¬D)

For this example, there are only two such lines. 

For example, the valuation that makes  
A, C, D true and B false  
violates the arrow rule

Our analysis shows that our constraints are 
equivalent to the requirement 

A ∧ ¬B ∧ ¬C 

We will find a way to compute this result logically.
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(¬A⋁¬C)⋀(¬B⋁C)⋀(B⋁A)⋀(¬C⋁D)⋀(¬D⋁¬B) 
≡ 

A ∧ ¬B ∧ ¬C

Our analysis shows that our constraints are 
equivalent to the requirement 

A ∧ ¬B ∧ ¬C 

Two expressions are equivalent iff they are 
satisfied by the same valuations.
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8R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒

R → G    G → A    
R → A



9R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒
Each condition excludes some valuations  

If we exclude valuations where R∧¬G 
and we exclude valuations where G∧¬A 

then 
we exclude valuations where R∧¬A 



10R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒

¬(R∧¬G)          ¬(G∧¬A)
¬(R∧¬A)

If we exclude valuations where R∧¬G 
and we exclude valuations where G∧¬A 

then 
we exclude valuations where R∧¬A



11R → G G → A (R → G) ∧ (G → A)

∧ =

R → A

⇒

¬R ∨ G          ¬G ∨ A
¬R ∨ A

¬(R∧¬G)          ¬(G∧¬A)
¬(R∧¬A)



Resolution (prototype)
¬R ∨ G          ¬G ∨ A

¬R ∨ A

If a valuation satisfies the constraints above the line  
then it satisfies the constraint below the line. 

We say the rule is sound.



Resolution (prototype)
¬R ∨ G          ¬G ∨ A

¬R ∨ A

X ∨ G          ¬G ∨ Y
X ∨ Y



Resolution (v 0.1)
X ∨ G          ¬G ∨ Y

X ∨ Y

This rule is sound: 
if a valuation satisfies the premises  

(the  constraints above the line) 
then it satisfies the conclusion 

(the constraint below the line)



Resolution (examples)
R ∨ S ∨ T ∨ G          ¬G ∨ P ∨ Q

R ∨ S ∨ T ∨ P ∨ Q 

This rule is sound: 
if a valuation satisfies the premises  

(the  constraints above the line) 
then it satisfies the conclusion 

(the constraint below the line)



Resolution (variations)
X ∨ G          ¬G

X ∨ Y

These rules are sound: 
if a valuation satisfies the premises  

(the  constraints above the line) 
then it satisfies the conclusion 

(the constraint below the line)

G          ¬G ∨ Y
Y



Resolution (v 0.1)
X ∨ G          ¬G ∨ Y

X ∨ Y

This rule is sound: 

if a valuation falsifies the conclusion  
then it falsifies one of the premises



Resolution (v 0.1)
X ∨ G          ¬G ∨ Y

X ∨ Y

if a valuation, V, falsifies the conclusion  

i.e. if V(X ∨ Y) = ⊥ then  

if V(G) = ⊥ then V(X ∨ G) = ⊥ 
if V(G) = ⊤ then V(¬G ∨ Y) = ⊥



Resolution (v 1.0)
X ∨ G          ¬G ∨ Y

X ∨ Y

if a valuation, V, falsifies the conclusion  

i.e. if V(X ∨ Y) = ⊥ then  

if V(G) = ⊥ then V(X ∨ G) = ⊥ 
if V(G) = ⊤ then V(¬G ∨ Y) = ⊥
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Clausal form is a set of sets of literals 

{ X0, X1, … , Xn-1 } 

where each clause, Xi = { L0,…,Lmi-1 }  
is a set of literals 
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Resolution (v. 1.0)  
rule for clauses

X Y where ¬A ∈ X, A ∈ Y
(X ⋃ Y) \  { ¬A, A } 

If a valuation V makes everything in the conclusion false 
then that valuation must make everything in one or other of 

the premises false. 

If V(A) = true,  then V makes everything in X false 
If V(A) = false, then V makes everything in Y false
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Resolution (v. 1.0)  
rule for clauses

X Y where ¬A ∈ X, A ∈ Y
(X ⋃ Y) \  { ¬A, A } 

If a valuation V makes everything in the conclusion false 
then that valuation must make everything in one or other of 

the premises false. 

If V(A) = true,  then V makes everything in X false 
If V(A) = false, then V makes everything in Y false

side-conditionset union set difference



23

Resolution (v. 1.0)  
rule for clauses

if  
we start from some set of constraints and apply resolution, 

then 
adding the new constraints 

 doesn’t exclude any more states 

if V contradicts any new constraint 
then it contradicts some original constraint



Resolution
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{{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X}}

{¬Z,¬X}{Z,Y} {Q,¬Z,X}{¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}

[{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X},{¬Z,X}, {¬Z}, {Z},{}]

Y

Z

X

Q



Resolution
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{{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X}}

{¬Z,¬X}{Z,Y} {Q,¬Z,X}{¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}

[{¬Y}, {Z,Y}, {¬Z,¬X}, {¬Q,X}, {Q,¬Z,X},{¬Z,X}, {¬Z}, {Z},{}]

Y

Z

X

Q



Refutation

Resolution
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{¬Z,¬X}{Z,Y} {Q,¬Z,X} {¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}
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Q

{Z,X}{¬Z,¬Y} {¬Q,Z,¬X} {Q,Z,¬X}

{Z,¬X}

{Z}

{¬Z,Y}

{¬Z}

{}

Y

Z

X

Q

these are disjunctions

these are conjunctions

is refuted by 
this

that



Refutation

Resolution
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{¬Z,¬X}{Z,Y} {Q,¬Z,X} {¬Q,X}

{¬Z,X}

{¬Z}

{¬Y}

{Z}

{}

Y

Z

X

Q

{Z,X}{¬Z,¬Y} {¬Q,Z,¬X} {Q,Z,¬X}

{Z,¬X}

{Z}

{¬Z,Y}

{¬Z}

{}

Y

Z
X

Q

these are disjunctions

these are conjunctions
is refuted by 

this

that



When does resolution stop? 
What does a set of clauses look like when there are no 

opportunities for resolution? 

Tomorrow we will see that if resolution stops, without producing 
the empty clause, then we can construct a satisfying valuation. 

This shows that the resolution procedure is complete – if a set 
of constraints is inconsistent we will produce the empty clause 

and a refutation tree. 
Otherwise we can produce a satisfying valuation.


