
cl
Informatics 1
School of Informatics, University of Edinburgh

NFA to DFA

• the Boolean algebra of languages

• regular expressions

1

A mathematical definition of a
Finite State Machine.

M = (Q, Σ, B, A, δ)
Q: the set of states,
Σ: the alphabet of the machine

- the tokens the machine can process,
B: the set of beginning or start states of the machine
A: the set of the machine's accepting states.
δ: the set of transitions

is a set of (state, symbol, state) triples
δ ⊆ Q × Σ x Q.

A trace for s = <x0,…xk-1> ∈ Σ* (a string of length k)
is a sequence of k+1 states <q0,…qk>
such that (qi,xi,qi+1) ∈ δ for each i < k

M = (Q, Σ, B, A, δ)

A trace for s = <x0, …, xk-1> ∈ Σ* (a string of length k)
is a sequence of k+1 states <q0,…qk>
such that (qi, xi, qi+1) ∈ δ for each i < k

We say s is accepted by M
iff there is

a trace <q0,…qk> for s
such that q0 ∈ B and qk ∈ A

q0 qkx0

Informatics 1
School of Informatics, University of Edinburgh

Non Determinism
In a non-deterministic machine (NFA), each state may have
any number of transitions with the same input symbol,
leaving to different successor states.

4

0 1

1

1

0 0

2 0 1

0 0 0,1

1 2

2

5

Informatics 1
School of Informatics, University of Edinburgh

Non Determinism
In a non-deterministic machine (NFA), each state may have
any number of transitions with the same input symbol,
leaving to different successor states.

6

0 1

1

1

0 0

2
0 1

0 0 0,1
1 2
2

0,1 0,2 0,10 0,1

010

1
1

0

0,2

Informatics 1
School of Informatics, University of Edinburgh

Non Determinism
In a non-deterministic machine (NFA), each state may have
any number of transitions with the same input symbol,
leaving to different successor states.

7

0 1

1

1

0 0

2
0 1

0 0 0,1
1 2
2

0,1 0,2 0,1
0,2 0 0,1

0 0,1

010

1
1

0

0,2

Informatics 1
School of Informatics, University of Edinburgh

Non Determinism
We can simulate a non-deterministic machine using a
deterministic machine – by keeping track of the set of states
the NFA could possibly be in.

8

0 1

1

1

0 0

2
0 1

0 0 0,1
1 2
2

0,1 0,2 0,1
0,2 0 0,1

0 0,1

010

1
1

0

0,2

Informatics 1
School of Informatics, University of Edinburgh

Internal Transitions
We sometimes add an internal transition ε to a non-
deterministic machine (NFA)This is a state change that
consumes no input.

9

0 1

10 0

2

0 1 ε
0 0 1

1 2 0

2

ε

0 1

1

1

0 0

2

Informatics 1
School of Informatics, University of Edinburgh

Internal Transitions
We sometimes add internal transitions
– labelled ε – to a non-deterministic
machine (NFA).
This is a state change that consumes
no input.
It introduces non-determinism in the
observed behaviour of the machine.

10

0 1

10 0

2

0 1 ε
0 0 1
1 2 0
2

ε

0ε* 1ε*
0 0 1,0
1 2
2

Informatics 1
School of Informatics, University of Edinburgh

Internal Transitions
We sometimes add internal transitions
– labelled ε – to a non-deterministic
machine (NFA).
This is a state change that consumes
no input.
It introduces non-determinism in the
observed behaviour of the machine.

11

0 1

10 0

2

0 1 ε
0 0 1
1 2 0
2

ε

0ε* 1ε*
0 0 0,1
1 2
2
0,1 0,2 1

Informatics 1
School of Informatics, University of Edinburgh

Internal Transitions
We sometimes add internal
transitions – labelled ε – to a non-
deterministic machine (NFA).

12

0 1

10 0

2

0 1 ε
0 0 1
1 2 0
2

ε 0ε* 1ε*
0 0 0,1
1 2
2
0,1 0,2 0,1
0,2 0 0,1

0

10

0

0,2

0,1
0

1
1

NFA any number of start
states and accepting states

S

13

R

sequence
RS

ε

14

SR

ε

alternation R|S

15

SR

iteration R*

ε

16

R

ε
ε

• any character is a regexp

• matches itself

• if R and S are regexps, so is RS

• matches
a match for R followed by a match for S

• if R and S are regexps, so is R|S

• matches
any match for R or S (or both)

• if R is a regexp, so is R*

• matches
any sequence of 0 or more matches for R

• The algebra of regular expressions also includes elements ∅ and ε

• ∅ matches nothing; ε matches the empty string

regular expressions

1909-1994

Kleene *, +

*+

Stephen Cole Kleene

• any character a is a regexp

• {<a>}

• if R and S are regexs, so is RS

• { r s ❘ r ∈ R and s ∈ S }

• if R and S are regexps, so is R|S

• R ∪ S
• if R is a regexp, so is R*

• { rn ❘ n ∈ N and r ∈ R

• ∅ ∅ | S = S = S | ∅

• ∅ empty set

• ε ε S = S = S ε
• {<>} singleton empty sequence:

regular expressions denote

regular sets

1909-1994

Kleene *, +

*+

Stephen Cole Kleene

https://en.wikipedia.org/wiki/Kleene_algebra

Regular Expressions

• using REs to find patterns

• implementing REs using finite state
automata

REs and FSAs

• Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata

• Finite-state automata are a way of
implementing regular expressions

• Regular expressions denote regular sets
of strings - each regular set is recognised
by some FSA

Regular expressions
• A formal language for specifying text strings
• How can we search for any of these?
!woodchuck
!woodchucks
!Woodchuck
!Woodchucks

Regular Expressions for
Textual Searches

Who does it?

Everybody:
• Web search engines, CGI scripts
• Information retrieval
• Word processing (Emacs, vi, MSWord)
• Linux tools (sed, awk, grep)
• Computation of frequencies from corpora
• Perl

23

24

http://xkcd.com/

Regular Expression

• Regular expression: formula in algebraic
notation for specifying a set of strings

• String: any sequence of alphanumeric characters

– letters, numbers, spaces, tabs, punctuation marks

• Regular expression search
–pattern: specifying the set of strings we want to search

for

–corpus: the texts we want to search through

Basic Regular Expression Patterns

• Case sensitive: d is not the same as D
• Disjunctions: [dD] [0123456789]
• Ranges: [0-9] [A-Z]
• Negations: [^Ss] (only when ^ occurs immediately after [)
• Optional characters: ? and *
• Wild : .
• Anchors: ^ and $, also \b and \B
• Disjunction, grouping, and precedence: | (pipe)

RE Match (single characters) Example Patterns Matched

[^A-Z] not an uppercase letter “Oyfn pripetchik”

[^Ss] neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”

[^\.] not a period “our resident Djinn”

[e/] either ‘e’ or ‘^’ “look up ˆ now”

a^b the pattern ‘a^b’ “look up aˆb now”

^T T at the beginning of a line “The Dow Jones closed up one”

Caret for negation, ^ , or anchor

Optionality and Counters
RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks “The woodchuck hid”

colou?r color or colour “comes in three colours”

(he){3} exactly 3 “he”s “and he said hehehe.”

? zero or one occurrences of previous char or expression
* zero or more occurrences of previous char or expression
+ one or more occurrences of previous char or expression
{n} exactly n occurrences of previous char or expression
{n, m} between n to m occurrences
{n, } at least n occurrences

Wild card ‘ .’

RE Match Example Patterns Matched

beg.n any char between beg and n begin, beg’n, begun
big.*dog find lines where big and the big dog bit the little
 dog occur the big black dog bit the

 . any character (but newline)
 * previous character or group, repeated 0 or more time
 + previous character or group, repeated 1 or more time
 ? previous character or group, repeated 0 or 1 time
 ^ start of line
 $ end of line
 [...] any character between brackets
 [^..] any character not in the brackets
 [a-z] any character between a and z
 \ prevents interpretation of following special char
 \| or
 \w word constituent
 \b word boundary

 \{3\} previous character or group, repeated 3 times
 \{3,\} previous character or group, repeated 3 or more times
 \{3,6\} previous character or group, repeated 3 to 6 times

32

33

% cat /usr/share/dict/words| egrep ^[poorsitcom]{10}$

34

$ cat /usr/share/dict/words| egrep ^[poorsitcom]{10}$
compositor
copromisor
crisscross
isoosmosis
isotropism
microtomic
optimistic
poroscopic
postcosmic
postscript
prioristic
promitosis
proproctor
protoprism
tricrotism
troostitic

35

% cat /usr/share/dict/words| egrep ^[poorsitcom]{10}$ | grep o.*o.*o
compositor
copromisor
isoosmosis
poroscopic
proproctor

Regular Expressions

• Basic regular expression patterns

• Java-based syntax

Reg Exp Match Example Patterns
[mM]other mother or Mother “Mother”
[abc] a or b or c “you are”

[1234567890] any digit “3 times a day”

• Disjunctions [mM]

Regular Expressions

• Ranges [A-Z]

• Negations [^Ss]

RE Match Examples Patterns Matched
[A-Z] an uppercase letter “call me Eliza”
[a-z] a lowercase letter “call me Eliza”
[0-9] a single digit “I’m off at 7”

RE Match Examples Patterns Matched
[^A-Z] not an uppercase letter “You can call me Eliza”
[^Ss] neither s nor S “Say hello Eliza”
[^\.] not a period “Hello.”

Regular Expressions

• Optional characters: ? ,* and +
– ? (0 or 1)
 colou?r " color or colour

– * (0 or more)
 oo*h! " oh! or ooh! or ooooh!

*+

Stephen Cole Kleene

– + (1 or more)

 o+h! " oh! or ooh! or ooooh!

- .any char except newline  
 beg.n " begin or began or begun

Regular Expressions

• Anchors ^ and $
– ^[A-Z] " “France”, “Paris”

– ^[^A-Z] " “¿verdad?”, “really?”

– \.$ " “It’s over.”

– moo$ " “moo”, but not “mood”

• Boundaries \b and \B
– \bon\b " “on my way” “Monday”

– \Bon\b " “automaton”

• Disjunction |
– yours|mine " “it’s either yours or mine”

Regular Expressions

• Replacement
• in emacs
• in javascript
• in python and perl
• …

s/\bI(’m| am)\b /ARE YOU/g

• Syntax varies - the ideas are universal

http://www.inf.ed.ac.uk/teaching/courses/il1/2010/labs/2010-10-28/regexrepl.xml

Experiment

• Replacement
• in emacs
• in javascript
• in python and perl
• …

s/\bI(’m| am)\b /ARE YOU/g

• Syntax varies - the ideas are universal

http://www.inf.ed.ac.uk/teaching/courses/il1/2010/labs/2010-10-28/regexrepl.xml

