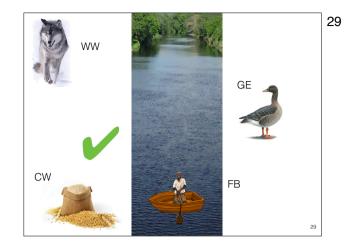
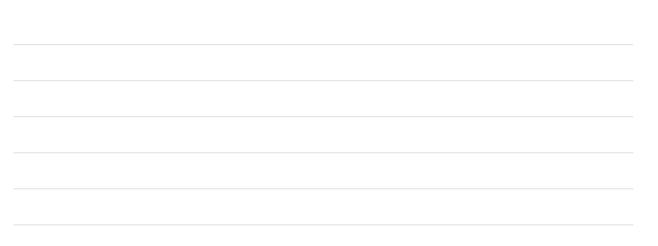
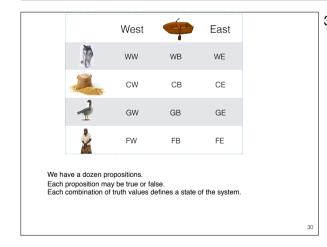
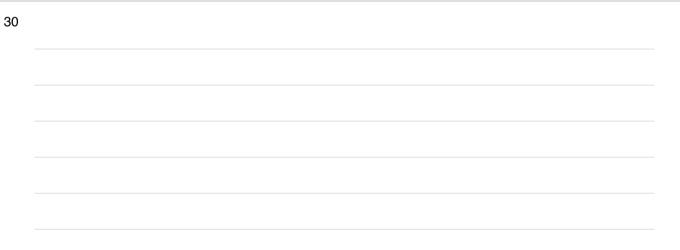


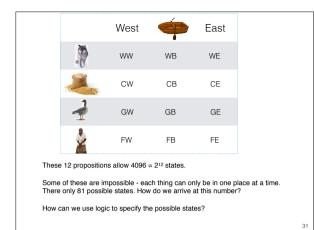
\sim	Exercise 1.1	28
	There are 8 regions in the diagram. How many subsets of this set of 8 regions are there?	
Given any subset of the e write a complex prop correspo (using and , or , and no	eight regions can you osition to which it onds	3

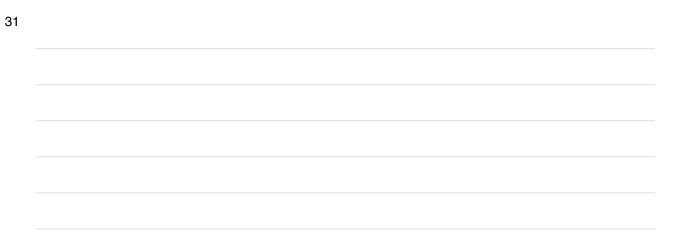


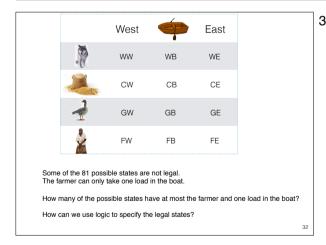


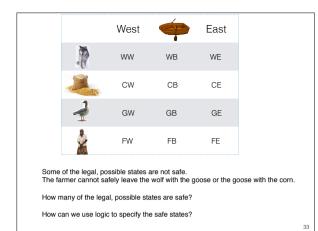


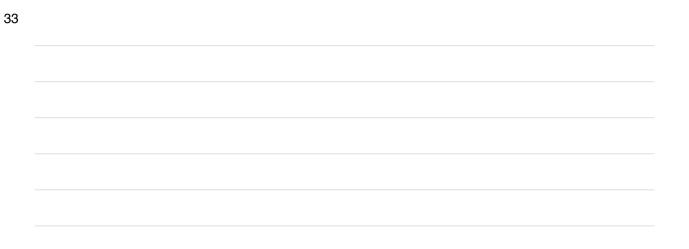


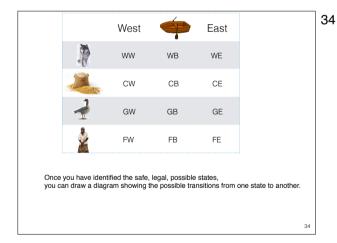


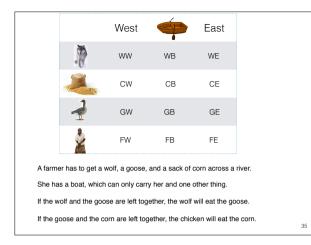


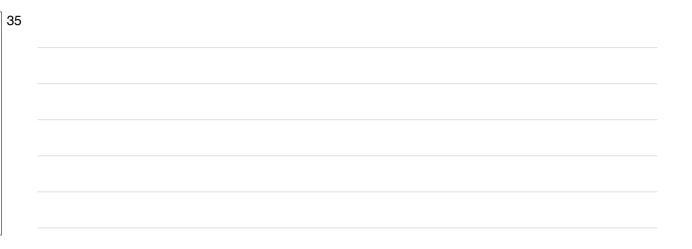


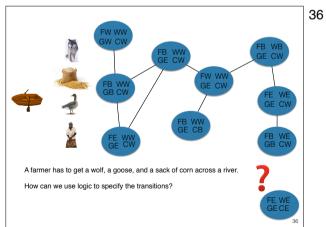












The		37
Mathematical Gazette	How can we use	
A JOURNAL OF THE MATHEMATICAL ASSOCIATION	propositional logic to	
Vol. 73 June 1989 No. 464	model the jealous husbands problem?	
The jealous husbands and The missionaries and cannibals	How many legal safe	
The classical river crossing problem of the jealous husbands involves three couples who have to cross a river using a boat that holds just two people. The	states are there for this	
coulous who have to choose a triver using a room tima moots just two people. Ine geloaksy of the hasheds requires that no wife can be in the presence of another man without her husband being present. This can be accomplished in 11 crossing (i.e. one-way trips). Tartaglia gave a sketch y solution for four couples but Bachet pointed out that this was erroncous and that four couples could not get access the river. In 1879. De Fontherary notified out that four or	problem?	
solution for a couples in $8\pi - 8$ crossings. Dudency improved the solution for $\pi - 4$ and Ball noted that this gives a $\pi - 3$ crossings.	Can we use propositional	
From the results of a computer search, we have discovered solutions in 16 crossings for $n = 4$ and in $4n + 1$ crossings for $n > 4$ and we have proven that these are the minimal number of crossings. We have also found that De	logic to model the	
ince are the minimal number of crossings, we have also found that De fontenay's solution should be in 8n - 6 crossings and that this is the minimal umber of crossings when trips from bank to bank are prohibited. The more recent missionaries and camibals problem has n of each type of	missionaries and	
The more recent missioniaries and cannibus problem has not each type of person and the conditions are that the cannibals must never outnumber the missionaries at any location. This is a proper weakening of the jealous husbands problem. When bank-to-bank crossings are prohibited. De	cannibals problem?	
nuscands protection. When bank-to-bank crossings are prohibited, De Fontenay's method already uses the least possible number of crossings, even disregarding any conditions, hence is also optimal for this version of the problem. When bank-to-bank crossing are permitted, the 16 crossing		
solution for the jealous husbands can be reduced to 15 and this generates a solution in 4w - 1 crossings, which is the minimal number of crossings for		
n≥3. 73	37	7

